ACD can configure probes for the various manual and automated assays for CD34 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nat Cell Biol.
2017 May 29
Hoeck JD, Biehs B, Kurtova AV, Kljavin NM, de Sousa E Melo F, Alicke B, Koeppen H, Modrusan Z, Piskol R, de Sauvage FJ.
PMID: 28553937 | DOI: 10.1038/ncb3535
Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5+(leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5+ cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34+ (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34+ cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5+ cells and inhibition of Wnt signalling prevents Lgr5+ cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.
Placenta
2016 Mar 30
Wua HH, Choia S, Levitt P.
PMID: - | DOI: 10.1016/j.placenta.2016.03.013
Serotonin (5-HT) is an important neuromodulator, but recently has been shown to be involved in neurodevelopment. Although previous studies have demonstrated that the placenta is a major source of forebrain 5-HT during early forebrain development, the processes of how 5-HT production, metabolism, and transport from placenta to fetus are regulated are unknown. As an initial step in determining the mechanisms involved, we investigated the expression patterns of genes critical for 5-HT system function in mouse extraembryonic tissues.
Mid-through late gestation expression of 5-HT system-related enzymes, Tph1, Ddc,Maoa, and 5-HT transporters, Sert/Slc6a4, Oct3/Slc22a3, Vmat2/Slc18a2, and 5-HT in placenta and yolk sac were examined, with cell type-specific resolution, using multiplex fluorescent in situ hybridization to co-localize transcripts and immunocytochemistry to co-localize the corresponding proteins and neurotransmitter.
Tph1 and Ddc are found in the syncytiotrophoblast I (SynT-I) and sinusoidal trophoblast giant cells (S-TGC), whereas Maoa is expressed in SynT-I, syncytiotrophoblast II (SynT-II) and S-TGC. Oct3 expression is observed in the SynT-II only, while Vmat2 is mainly expressed in S-TGC. Surprisingly, there were comparatively high expression of Tph1,Ddc, and Maoa in the yolk sac visceral endoderm.
In addition to trophoblast cells, visceral endoderm cells in the yolk sac may contribute to fetal 5-HT production. The findings raise the possibility of a more complex regulation of 5-HT access to the fetus through the differential roles of trophoblasts that surround maternal and fetal blood space and of yolk sac endoderm prior to normal degeneration.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com