Biological Psychiatry Global Open Science
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Yao, Y;Chen, J;Li, X;Chen, ZF;Li, P;
PMID: 36750092 | DOI: 10.1016/j.cub.2023.01.019
Increased ventilation is a critical process that occurs when the body responds to a hypoxic environment. Sighs are long, deep breaths that prevent alveolar collapse, and their frequency is significantly increased by hypoxia. In this study, we first show that sighing is induced by hypoxia as a function of increased hypoxic severity and that hypoxia-induced sighing is capable of increasing the oxygen saturation in a mouse model. We next found that the gastrin-releasing peptide (Grp) expressing neurons in the nucleus of the solitary tract (NTS) are important in mediating hypoxia-induced sighing. Retrograde tracing from these Grp neurons reveals their direct afferent input from the petrosal ganglion neurons that innervate the carotid body, the major peripheral chemoreceptor that senses blood oxygen. Acute hypoxia preferentially activates these Grp neurons in the NTS. Photoactivation of these neurons through their projections in the inspiratory rhythm generator in the ventral medulla induces sighing, whereas genetic ablation or chemogenetic silencing of these neurons specifically diminishes the sighs, but not other respiratory responses, induced by hypoxia. Finally, the mice with reduced sighing in hypoxia exhibit an elevated heart-rate increase, which may compensate for maintaining the blood oxygen level. Therefore, we identified a neural circuit that connects the carotid body to the breathing control center in the ventral medulla with a specific function for hypoxia-induced sighing, which restores the oxygen level.
A neural circuit for excessive feeding driven by environmental context in mice
Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9
Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Leithead, AB;Godino, A;Barbier, M;Harony-Nicolas, H;
PMID: 37245781 | DOI: 10.1016/j.biopsych.2023.05.016
The posterior intralaminar (PIL) complex of the thalamus is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed.We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real-time during social and non-social interactions. Finally, we used inhibitory DREADDs in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation.We observed significantly more c-fos-positive cells in the PIL of mice exposed to social versus object or no stimuli. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time it took female mice to form social habituation.Together these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.