Biological Psychiatry Global Open Science
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Neuromodulatory effect of interleukin 1β in the dorsal raphe nucleus on individual differences in aggression
Takahashi, A;Aleyasin, H;Stavarache, MA;Li, L;Cathomas, F;Parise, LF;Lin, HY;Burnett, CJ;Aubry, A;Flanigan, ME;Brancato, A;Menard, C;Pfau, ML;Kana, V;Wang, J;Hodes, GE;Sasaki, T;Kaplitt, MG;Ogawa, S;McEwen, BS;Russo, SJ;
PMID: 33931727 | DOI: 10.1038/s41380-021-01110-4
Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1β (IL-1β) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1β in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1β signaling in the DRN controls expression of aggressive behavior.
Zhang, S;Zhang, X;Zhong, H;Li, X;Wu, Y;Ju, J;Liu, B;Zhang, Z;Yan, H;Wang, Y;Song, K;Hou, ST;
PMID: 36371436 | DOI: 10.1038/s41467-022-34735-2
Therapeutic hypothermia at 32-34 °C during or after cerebral ischaemia is neuroprotective. However, peripheral cold sensor-triggered hypothermia is ineffective and evokes vigorous counteractive shivering thermogenesis and complications that are difficult to tolerate in awake patients. Here, we show in mice that deep brain stimulation (DBS) of warm-sensitive neurones (WSNs) in the medial preoptic nucleus (MPN) produces tolerable hypothermia. In contrast to surface cooling-evoked hypothermia, DBS mice exhibit a torpor-like state without counteractive shivering. Like hypothermia evoked by chemogenetic activation of WSNs, DBS in free-moving mice elicits a rapid lowering of the core body temperature to 32-34 °C, which confers significant brain protection and motor function reservation. Mechanistically, activation of WSNs contributes to DBS-evoked hypothermia. Inhibition of WSNs prevents DBS-evoked hypothermia. Maintaining the core body temperature at normothermia during DBS abolishes DBS-mediated brain protection. Thus, the MPN is a DBS target to evoke tolerable therapeutic hypothermia for stroke treatment.
Jia, D;Zhou, Z;Kwon, OJ;Zhang, L;Wei, X;Zhang, Y;Yi, M;Roudier, MP;Regier, MC;Dumpit, R;Nelson, PS;Headley, M;True, L;Lin, DW;Morrissey, C;Creighton, CJ;Xin, L;
PMID: 36369237 | DOI: 10.1038/s41467-022-34665-z
Cancer-associated fibroblasts (CAFs) mediate an immunosuppressive effect, but the underlying mechanism remains incompletely defined. Here we show that increasing prostatic stromal Foxf2 suppresses the growth and progression of both syngeneic and autochthonous mouse prostate cancer models in an immunocompetent context. Mechanistically, Foxf2 moderately attenuates the CAF phenotype and transcriptionally downregulates Cxcl5, which diminish the immunosuppressive myeloid cells and enhance T cell cytotoxicity. Increasing prostatic stromal Foxf2 sensitizes prostate cancer to the immune checkpoint blockade therapies. Augmenting lung stromal Foxf2 also mediates an immunosuppressive milieu and inhibits lung colonization of prostate cancer. FOXF2 is expressed higher in the stroma of human transition zone (TZ) than peripheral zone (PZ) prostate. The stromal FOXF2 expression level in primary prostate cancers inversely correlates with the Gleason grade. Our study establishes Foxf2 as a stromal transcription factor modulating the tumor immune microenvironment and potentially explains why cancers are relatively rare and indolent in the TZ prostate.