ACD can configure probes for the various manual and automated assays for BRCA1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
BMC Cancer 15.1 (2015): 1-7.
Boukerroucha M, Josse C, Segers K, El-Guendi S, Frères P, Jerusalem G, Bours V.
Int J Mol Sci.
2019 Feb 06
Lattimore VL, Pearson JF, Morley-Bunker AE, Investigators kConFab, Spurdle, Robinson AB, Currie BA, Walker MJ, Logan C.
PMID: 30736279 | DOI: 10.3390/ijms20030693
BRCA1 and BRCA2 spliceogenic variants are often associated with an elevated risk of breast and ovarian cancers. Analyses of BRCA1 and BRCA2 splicing patterns have traditionally used technologies that sample a population of cells but do not account for the variation that may be present between individual cells. This novel proof of concept study utilises RNA in situ hybridisation to measure the absolute expression of BRCA1 and BRCA2 mRNA splicing events in single lymphoblastoid cells containing known spliceogenic variants (BRCA1c.671-2 A>G or BRCA2c.7988 A>T). We observed a large proportion of cells (>42%) in each sample that did not express mRNA for the targeted gene. Increased levels (average mRNA molecules per cell) of BRCA2 ∆17_18 were observed in the cells containing the known spliceogenic variant BRCA2c.7988 A>T, but cells containing BRCA1c.671-2 A>G were not found to express significantly increased levels of BRCA1 ∆11, as had been shown previously. Instead, we show for each variant carrier sample that a higher proportion of cells expressed the targeted splicing event compared to control cells. These results indicate that BRCA1/2 mRNA is expressed stochastically, suggesting that previously reported results using RT-PCR may have been influenced by the number of cells with BRCA1/2 mRNA expression and may not represent an elevation of constitutive mRNA expression. Detection of mRNA expression in single cells allows for a more comprehensive understanding of how spliceogenic variants influence the expression of mRNA isoforms. However, further research is required to assess the utility of this technology to measure the expression of predicted spliceogenic BRCA1 and BRCA2 variants in a diagnostic setting.
Oncology Letters
2019 Mar 08
Kim H, Hwang I, Min H, Bang Y and Kim W
| DOI: 10.3892/ol.2019.10132
BMC Cancer.
2015 Oct 21
Boukerroucha M, Josse C, ElGuendi S, Boujemla B, Frères P, Marée R, Wenric S, Segers K, Collignon J, Jerusalem G, Bours V.
PMID: 26490435 | DOI: 10.1186/s12885-015-1740-9.
Clin Cancer Res. 2014 Jun 24
Naipal KA, Verkaik NS, Ameziane N, van Deurzen CH, Ter Brugge P, Meijers M, Sieuwerts AM, Martens J, O'Connor MJ, Vrieling H, Hoeijmakers JH, Jonkers J, Kanaar R, de Winter J, Vreeswijk M, Jager A, van Gent DC.
PMID: 24963051
Stem cell reports
2023 Apr 07
Chen, JK;Wiedemann, J;Nguyen, L;Lin, Z;Tahir, M;Hui, CC;Plikus, MV;Andersen, B;
PMID: 37084727 | DOI: 10.1016/j.stemcr.2023.03.013
Clin Cancer Res.
2018 Aug 23
Meijer TG, Verkaik NS, Sieuwerts AM, van Riet J, Naipal KAT, van Deurzen CHM, den Bakker M, Sleddens HFBM, Dubbink HJ, den Toom TD, Dinjens WNM, Lips EH, Nederlof PM, Smid M, van de Werken HJG, Kanaar R, Martens JWM, Jager A, van Gent DC.
PMID: 30139880 | DOI: 10.1158/1078-0432.CCR-18-0063
Abstract
PURPOSE:
Tumors of germline BRCA1/2 mutated carriers show homologous recombination (HR) deficiency (HRD), resulting in impaired DNA double strand break (DSB) repair and high sensitivity to Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors. Although this therapy is expected to be effective beyond germline BRCA1/2 mutated carriers, a robust validated test to detect HRD tumors is lacking. In the present study we therefore evaluated a functional HR assay exploiting the formation of RAD51 foci in proliferating cells after ex vivo irradiation of fresh breast cancers (BrC) tissue: the RECAP test.
METHODS:
Fresh samples of 170 primary BrC were analyzed using the RECAP test. The molecular explanation for the HRD phenotype was investigated by exploring BRCA deficiencies, mutational signatures, tumor infiltrating lymphocytes (TILs) and microsatellite instability (MSI).
RESULTS:
RECAP was completed successfully in 148 out of 170 samples (87%). 24 tumors showed HRD (16%), while 6 tumors were HR intermediate (HRi) (4%). HRD was explained by BRCA deficiencies (mutations, promoter hypermethylation, deletions) in 16 cases, whereas 7 HRD tumors were non-BRCA related. HRD tumors showed an increased incidence of high TIL counts (p=0.023) compared to HR proficient (HRP) tumors and MSI was more frequently observed in the HRD group (2/20, 10%) than expected in BrC (1%) (p=0.017).
CONCLUSION:
RECAP is a robust functional HR assay detecting both BRCA1/2 deficient and BRCA1/2 proficient HRD tumors. Functional assessment of HR in a pseudo-diagnostic setting is achievable and produces robust and interpretable results.
Breast cancer research and treatment
2021 Jul 21
Wiggins, GAR;Black, MA;Dunbier, A;Morley-Bunker, AE;kConFab Investigators, ;Pearson, JF;Walker, LC;
PMID: 34287743 | DOI: 10.1007/s10549-021-06328-y
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com