Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for BRAF

ACD can configure probes for the various manual and automated assays for BRAF for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for BRAF gene.

  • Expression of BRAF in Human Lymphoma sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for BRAF (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (2)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (3) Apply Lgr5 filter
  • Axin2 (2) Apply Axin2 filter
  • (-) Remove BRAF filter BRAF (2)
  • TERT (2) Apply TERT filter
  • TBD (2) Apply TBD filter
  • Mlana (1) Apply Mlana filter
  • CSF1R (1) Apply CSF1R filter
  • ETV1 (1) Apply ETV1 filter
  • NOTUM (1) Apply NOTUM filter
  • CDX2 (1) Apply CDX2 filter
  • ZEB1 (1) Apply ZEB1 filter
  • sox10 (1) Apply sox10 filter
  • Ly6a (1) Apply Ly6a filter
  • PD-L1 (1) Apply PD-L1 filter
  • ANXA1 (1) Apply ANXA1 filter
  • Rax (1) Apply Rax filter
  • PD-1 (1) Apply PD-1 filter
  • Col25a1 (1) Apply Col25a1 filter
  • Scn7a (1) Apply Scn7a filter
  • SNAIL (1) Apply SNAIL filter
  • SLUG (1) Apply SLUG filter

Product

  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Cancer filter Cancer (2)

Category

  • Publications (2) Apply Publications filter
Clinicopathologic correlations of the BRAF(V600E) mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma.

Pathol Res Pract. 2015 Feb;211(2):162-70.

Jung YY, Yoo JH, Park ES, Kim MK, Lee TJ, Cho BY, Chung YJ, Kang KH, Ahn HY, Kim HS.

BACKGROUND: The BRAF(V600E) mutation is the most common genetic alteration in papillary thyroid carcinoma (PTC). The aim of this study is to analyze the clinicopathologic correlations of the BRAF(V600E) mutation, BRAF V600E immunohistochemistry (IHC) and BRAF RNA in situ hybridization (ISH) in PTC. METHODS: This study included 467 patients with PTC who underwent surgical resection. We studied the BRAF(V600E) mutation using real-time PCR and BRAF V600E and BRAF RNA ISH using tissue microarray (TMA). RESULTS: The frequencies of a positive BRAF(V600E) mutation by real-time PCR, positive BRAF V600E IHC, and high BRAF RNA ISH were 84%, 86%, and 70%, respectively, in PTC. Conventional PTC had higher positive rates in all three tests than other histologic types. The BRAF(V600E) mutation, BRAF V600E IHC, low ΔCt, and high BRAF RNA ISH were significantly associated with lymph node metastasis. The BRAF(V600E) mutation was significantly associated with positive immunostaining for BRAF V600E mutant protein (P<0.001) overall, with high BRAF RNA ISH only in the follicular variant (P=0.035). No significant correlation was noted between BRAF V600E IHC and BRAF RNA ISH. The sensitivity of BRAF V600E IHC for the BRAF(V600E) mutation was 95%, and the specificity was 61% overall, 96% and 54% in the conventional type, and 85% and 70% in the follicular variant. CONCLUSIONS: Our results showed that positive BRAF V600E IHC significantly correlated with the BRAF(V600E) mutation. This suggests its clinical utility as a screening tool for the BRAF(V600E) mutation. In addition, a high BRAF RNA ISH score could be a candidate marker of aggressive behavior in BRAF(V600E) mutation-positive cases of PTC.
BRAF RNA is prognostic and widely expressed in lung adenocarcinoma

Translational Lung Cancer Research

2023 Jan 01

Dora, D;Vörös, I;Varga, Z;Takacs, P;Teglasi, V;Moldvay, J;Lohinai, Z;
| DOI: 10.21037/tlcr-22-449

BRAF kinase has an essential role in intracellular signaling, facilitating signal transduction from membrane receptors to the nucleus following epithelial growth factor receptor (EGFR) activation (30). The co-inhibition of MEK- and BRAF kinases have improved outcomes in some _BRAF_-mutated malignities; however, most cases still develop some form of resistance (31-33). While BRAF kinase is normally deactivated in healthy tissues through a negative feedback loop, mutations in the _BRAF_ gene result in persistent activation of downstream cell signaling in the MAPK pathway, leading to uncontrolled cell growth and proliferation (34-36). Others showed in Caucasian lung cancer patient cohorts that smoking status was associated with a non-V600E mutation (20,37,38). In contrast, a study on an East Asian LADC cohort and a meta-analysis of 16 studies found the V600E subtype more common in non-smokers. The same studies showed associations with decreased chemosensitivity and worse prognosis (39,40). This is in line with our results, where increased BRAF RNA expression was also associated with non-smoker patient history and detrimental OS. In our cohort, most patients showed strong diffuse BRAF RNA signals that cannot be explained by potential V600E mutations since its frequency hardly reaches 3-5% in LADC patients. This might mean that WT BRAF can still be overexpressed in the absence of mutation in the _BRAF_ gene due to alternative intracellular signaling pathways or the tumor microenvironment. This is underlined by the fact that the gene’s protein product is also detectable by IHC with at least moderate staining intensity in 80% of samples, according to the HPA database. Activation of the BRAF-MAPK pathway is always preceded by the interaction between the guanosine-nucleotide-binding protein RAS and a Receptor Tyrosine Kinase (RTK). Because BRAF selectively binds to active RAS (41), hypothetically, increased RAS activation and RTK function might have a positive upstream effect on BRAF signaling, even in the absence of activating mutations.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?