Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for ALB

ACD can configure probes for the various manual and automated assays for ALB for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for ALB (399)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (9)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • ALB (7) Apply ALB filter
  • Adgre1 (2) Apply Adgre1 filter
  • Mmut (2) Apply Mmut filter
  • hF9 (2) Apply hF9 filter
  • ACTA2 (1) Apply ACTA2 filter
  • KRT19 (1) Apply KRT19 filter
  • IGFBP7 (1) Apply IGFBP7 filter
  • Apoe (1) Apply Apoe filter
  • Sucnr1 (1) Apply Sucnr1 filter
  • slit2 (1) Apply slit2 filter
  • ACTA1 (1) Apply ACTA1 filter

Product

  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Cancer (3) Apply Cancer filter
  • Inflammation (3) Apply Inflammation filter
  • CGT (1) Apply CGT filter
  • CRISPR (1) Apply CRISPR filter
  • Gene Editing (1) Apply Gene Editing filter
  • Metabolism (1) Apply Metabolism filter
  • Neuroscience (1) Apply Neuroscience filter

Category

  • Publications (9) Apply Publications filter
Growth advantage of corrected hepatocytes in a juvenile model of methylmalonic acidemia following liver directed adeno-associated viral mediated nuclease-free genome editing

Molecular genetics and metabolism

2022 Jul 04

Venturoni, LE;Chandler, RJ;Liao, J;Hoffmann, V;Ramesh, N;Gordo, S;Chau, N;Venditti, CP;
PMID: 35868241 | DOI: 10.1016/j.ymgme.2022.06.011

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.
"Detection of Albumin Expression by RNA In Situ Hybridization Is a Sensitive and Specific Method for Identification of Hepatocellular Carcinomas and Intrahepatic Cholangiocarcinomas. "

Am J Clin Pathol.

2018 May 09

Lin F, Shi J, Wang HL, Ma XJ, Monroe R, Luo Y, Chen Z, Liu H.
PMID: 29746696 | DOI: 10.1093/ajcp/aqy030

Abstract

OBJECTIVES:

Inconsistent data on detection of albumin expression by ribonucleic acid (RNA) in situ hybridization have been reported. We investigated the utility of RNAscope (Advanced Cell Diagnostics, Hayward, CA) in detection of albumin in hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (ICCs), and carcinomas from various organs using manual and automated staining.

METHODS:

RNAscope for albumin detection was performed on 482 cases on tissue microarray sections and on 22 cases of ICC, including 14 surgical resection and eight core biopsy specimens.

RESULTS:

Thirty-six of 37 (97%) HCCs had detectable mRNA, whereas all non-HCC and non-ICC cases, except one lung adenocarcinoma, were negative for albumin. Fourteen of 22 ICCs (64%) were positive for albumin.

CONCLUSIONS:

RNAscope for albumin is highly sensitive and specific for identifying HCCs and is highly specific and moderately sensitive for detection of ICCs; however, rare carcinomas (non-HCC, non-ICC, and those with no hepatoid histomorphology) can also have aberrant expression of albumin.

Liver macrophages regulate systemic metabolism through non-inflammatory factors

Nature Metabolism

2019 Mar 25

Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E, Kumar C, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrell T, Lauschke VM, Boucher J, Tomčala A, Krejčová G, Bajgar A and Aouadi M
| DOI: 10.1038/s42255-019-0044-9

Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor–binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.
Albumin In Situ Hybridization Can Be Positive in Adenocarcinomas and Other Tumors From Diverse Sites

Am J Clin Pathol

2019 May 20

Nasir A, Lehrke HD, Mounajjed T, Said S, Zhang L, Yasir S, Shah SS, Chandan VS, Smyrk TC, Moreira RK, Boland Froemming JM, Herrera Hernandez LP, Wu TT, Graham RP.
PMID: 31107526 | DOI: 10.1093/ajcp/aqz032

OBJECTIVES:

Albumin messenger RNA (mRNA) expression is a marker of hepatocellular differentiation. Most published data are from review of tissue microarrays, and albumin in situ hybridization (ISH) expression across several tumor types is incompletely characterized.

METHODS:

Sections from 221 tumors were evaluated for albumin mRNA. Immunohistochemistry was used to confirm diagnoses. Albumin ISH was performed according to manufacturer-provided instructions. Fifty-nine cases were evaluated with both commercial ISH assays.

RESULTS:

Albumin mRNA was detected in all hepatocellular carcinomas (HCCs) and 81% of intrahepatic cholangiocarcinomas. Lung (20%), gallbladder (39%), hepatoid pancreatic (n = 1 of 1) adenocarcinoma, breast invasive ductal carcinoma (18%), yolk sac tumor (25%), and acinar cell carcinoma (29%) showed expression. Both assays were concordant in 93% of cases.

CONCLUSIONS:

Albumin ISH was expressed in all HCCs studied. It was also positive in intrahepatic cholangiocarcinoma and patchy positive in gallbladder adenocarcinoma and a subset of other neoplasms, which can be a potential pitfall

Coadaptation fostered by the SLIT2-ROBO1 axis facilitates liver metastasis of pancreatic ductal adenocarcinoma

Nature communications

2023 Feb 15

Li, Q;Zhang, XX;Hu, LP;Ni, B;Li, DX;Wang, X;Jiang, SH;Li, H;Yang, MW;Jiang, YS;Xu, CJ;Zhang, XL;Zhang, YL;Huang, PQ;Yang, Q;Zhou, Y;Gu, JR;Xiao, GG;Sun, YW;Li, J;Zhang, ZG;
PMID: 36792623 | DOI: 10.1038/s41467-023-36521-0

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.
Células e tecidos humanos em estudos pré-clínicos: gânglios raquidianos humanos

iasp-pain.org

2022 Jan 01

Dib-Hajj, SD;

A dor é uma experiência sensorial e emocional, comumente iniciada em resposta a um estímulo nóxico. Um grupo de neurónios sensoriais periféricos, conhecidos como nociceptores, são os primeiros neurónios a serem ativados pelo estímulo nóxico. Os corpos celulares dos neurónios sensoriais estão alojados no gânglio do trigémeo (TG) ou no gânglio raquidiano dorsal (DRG), situados bilateralmente e adjacentes ao tronco cerebral ou coluna vertebral. Estes neurónios pseudounipolares dão origem a um ramo periférico que inerva órgãos-alvo, por exemplo a pele e as vísceras, e um ramo central que termina no tronco cerebral ou no corno dorsal da medula espinhal [4]. Os neurónios sensoriais são altamente heterogéneos, com múltiplas subpopulações cada uma possuindo uma constelação de propriedades de resposta a estímulos não nociceptivos e nociceptivos. Os neurónios nociceptivos não são apenas responsáveis por sinalizar a presença de uma lesão aguda no tecido, mas parecem desempenhar um papel essencial na dor persistente e na hipersensibilidade associada a muitos estados de dor crónica. Assim, entender os fundamentos moleculares e celulares da transmissão de sinal em e através dos nociceptores é essencial para o desenvolvimento de tratamentos eficazes e seguros para a dor.
Fludarabine increases nuclease-free AAV- and CRISPR/Cas9-mediated homologous recombination in mice

Nature biotechnology

2022 Apr 07

Tsuji, S;Stephens, CJ;Bortolussi, G;Zhang, F;Baj, G;Jang, H;de Alencastro, G;Muro, AF;Pekrun, K;Kay, MA;
PMID: 35393561 | DOI: 10.1038/s41587-022-01240-2

Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics.
UCP1 governs liver extracellular succinate and inflammatory pathogenesis

Nature metabolism

2021 May 01

Mills, EL;Harmon, C;Jedrychowski, MP;Xiao, H;Garrity, R;Tran, NV;Bradshaw, GA;Fu, A;Szpyt, J;Reddy, A;Prendeville, H;Danial, NN;Gygi, SP;Lynch, L;Chouchani, ET;
PMID: 34002097 | DOI: 10.1038/s42255-021-00389-5

Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.
In vivo genome editing at the albumin locus to treat methylmalonic acidemia

Molecular Therapy - Methods & Clinical Development

2021 Dec 01

Schneller, J;Lee, C;Venturoni, L;Chandler, R;Li, A;Myung, S;Cradick, T;Hurley, A;Lagor, W;Bao, G;Venditti, C;
| DOI: 10.1016/j.omtm.2021.11.004

Methylmalonic acidemia (MMA) is a metabolic disorder most commonly caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene. Although adeno-associated viral (AAV) gene therapy has been effective at correcting the disease phenotype in MMA mouse models, clinical translation may be impaired by loss of episomal transgene expression and magnified by the need to treat patients early in life. To achieve permanent correction, we developed a dual AAV strategy to express a codon-optimized MMUT transgene from Alb and tested various CRISPR-Cas9 genome-editing vectors in newly developed knockin mouse models of MMA. For one target site in intron 1 of Alb, we designed rescue cassettes expressing MMUT behind a 2A-peptide or an internal ribosomal entry site sequence. A second guide RNA targeted the initiator codon, and the donor cassette encompassed the proximal albumin promoter in the 5′ homology arm. Although all editing approaches were therapeutic, targeting the start codon of albumin allowed the use of a donor cassette that also functioned as an episome and after homologous recombination, even without the expression of Cas9, as an integrant. Targeting the albumin locus using these strategies would be effective for other metabolic disorders where early treatment and permanent long-term correction are needed.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?