Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for AHR

ACD can configure probes for the various manual and automated assays for AHR for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for AHR (176)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (10)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Ahr (3) Apply Ahr filter
  • CYP1A1 (3) Apply CYP1A1 filter
  • TBD (2) Apply TBD filter
  • Pou3f3 (1) Apply Pou3f3 filter
  • Ace2 (1) Apply Ace2 filter
  • 16S (1) Apply 16S filter
  • ARTN (1) Apply ARTN filter
  • SARS-CoV-2 (1) Apply SARS-CoV-2 filter
  • IL-17 (1) Apply IL-17 filter
  • Mouse: Ret (1) Apply Mouse: Ret filter
  • Arntl Zebrafish: ret (1) Apply Arntl Zebrafish: ret filter

Product

  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (1) Apply TBD filter

Research area

  • Inflammation (4) Apply Inflammation filter
  • Neuroscience (3) Apply Neuroscience filter
  • Aging (1) Apply Aging filter
  • CGT (1) Apply CGT filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Other: Bone (1) Apply Other: Bone filter
  • Other: Intestine (1) Apply Other: Intestine filter

Category

  • Publications (10) Apply Publications filter
93 Computational biology and tissue-based approaches to inform indication selection for a novel AHR inhibitor

Journal for ImmunoTherapy of Cancer

2021 Nov 01

Sanchez-Martin, M;Wang, L;Ecsedy, J;Mcgovern, K;Zhang, M;
| DOI: 10.1136/jitc-2021-sitc2021.093

BackgroundAryl Hydrocarbon Receptor (AHR) is a ligand-activated transcription factor that regulates the activities of multiple innate and adaptive immune cell types. Multiple ligands such as kynurenine bind to AHR driving its nuclear translocation and transcriptional activation, leading to an immunosuppressive tumor microenvironment.1 2 AHR activation is implicated in tumor development in multiple cancer types. In addition, high levels of serum kynurenine are associated with resistance to checkpoint inhibitors.3 To overcome AHR-mediated immunosuppression in cancers, we developed a selective oral AHR inhibitor IK-175 and took a combined computational and tissue-based approach to select cancer indications for its clinical development.MethodsThe aim of this work is to identify tumor indications dependent on AHR signaling and design patient selection strategies based on a proprietary transcriptional signature, mRNA and protein detection assays to evaluate AHR pathway activation in tumors.ResultsGenomic profiling of solid and hematological cancers from TCGA and Project GENIE databases identified bladder and esophageal tumors among others, as frequently harboring AHR gene amplifications.A proprietary gene signature of AHR activation was developed integrating literature, pathway analysis, RNAseq and nanostring data from PBMC, T-cells and cell lines upon AHR inhibition. Transcriptional analysis of the TCGA data using this signature demonstrated bladder cancer has the highest expressions of AHR and AHR signature genes, suggesting increased pathway activity in bladder cancer relative to other cancer types. Increased AHR signature gene expression was associated with worse overall survival in the TCGA bladder cancer cohort. Furthermore, RNAscope analysis of a tissue microarray containing 10 different tumor types revealed bladder cancer had one of the highest AHR transcript expression in the tumor compartment.Finally, nuclear localization of AHR protein was assessed as an indicator of pathway activation through the development of a novel IHC method. Extensive TMA screening of AHR protein in 15 different indications demonstrated bladder cancer as the tumor type with the highest prevalence of AHR nuclear expression.ConclusionsIn summary, we demonstrated high prevalence of nuclear AHR protein expression, AHR gene amplification and target gene expression in bladder cancer, suggesting aberrant AHR activation may play an important role in the progression of this tumor type. This study provides rationale for therapeutic targeting of AHR in bladder cancer patients. Ikena is currently evaluating the anti-tumor activity of IK-175 as a single agent and in combination with nivolumab in bladder cancer in a Phase 1a/1b clinical study (NCT04200963).ReferencesQuintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013 Aug 1;65(4):1148-61.Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 2014 Dec;14(12):801-14.Li, Haoxin et al. ‘Metabolomic adaptations and correlates of survival to immune checkpoint blockade.’ Nature Communications 2019 Sep 25;10:1-4346.
The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

Nat Immunol.

2016 Nov 21

Hidaka T, Ogawa E, Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Fujimura T, Aiba S, Nakayama K, Okuyama R, Yamamoto M.
PMID: 27869817 | DOI: 10.1038/ni.3614

Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain.

Front Neuroanat.

2017 Feb 07

Kimura E, Tohyama C.
PMID: 28223923 | DOI: 10.3389/fnana.2017.00004

Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situhybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain.

Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor

Part Fibre Toxicol.

2018 May 03

Jaligama S, Patel VS, Wang P, Sallam A, Harding J, Kelley M, Mancuso SR, Dugas TR, Cormier SA.
PMID: 29724254 | DOI: 10.1186/s12989-018-0255-3

Abstract

BACKGROUND:

Pollutant particles containing environmentally persistent free radicals (EPFRs) are formed during many combustion processes (e.g. thermal remediation of hazardous wastes, diesel/gasoline combustion, wood smoke, cigarette smoke, etc.). Our previous studies demonstrated that acute exposure to EPFRs results in dendritic cell maturation and Th17-biased pulmonary immune responses. Further, in a mouse model of asthma, these responses were enhanced suggesting exposure to EPFRs as a risk factor for the development and/or exacerbation of asthma. The aryl hydrocarbon receptor (AHR) has been shown to play a role in the differentiation of Th17 cells. In the current study, we determined whether exposure to EPFRs results in Th17 polarization in an AHR dependent manner.

RESULTS:

Exposure to EPFRs resulted in Th17 and IL17A dependent pulmonary immune responses including airway neutrophilia. EPFR exposure caused a significant increase in pulmonary Th17 cytokines such as IL6, IL17A, IL22, IL1β, KC, MCP-1, IL31 and IL33. To understand the role of AHR activation in EPFR-induced Th17 inflammation, A549 epithelial cells and mouse bone marrow-derived dendritic cells (BMDCs) were exposed to EPFRs and expression of Cyp1a1 and Cyp1b1, markers for AHR activation, was measured. A significant increase in Cyp1a1 and Cyp1b1 gene expression was observed in pulmonary epithelial cells and BMDCs in an oxidative stress and AHR dependent manner. Further, in vivo exposure of mice to EPFRs resulted in oxidative stress and increased Cyp1a1 and Cyp1b1 pulmonary gene expression. To further confirm the role of AHR activation in pulmonary Th17 immune responses, mice were exposed to EPFRs in the presence or absence of AHR antagonist. EPFR exposure resulted in a significant increase in pulmonary Th17 cells and neutrophilic inflammation, whereas a significant decrease in the percentage of Th17 cells and neutrophilic inflammation was observed in mice treated with AHR antagonist.

CONCLUSION:

Exposure to EPFRs results in AHR activation and induction of Cyp1a1 and in vitro this is dependent on oxidative stress. Further, our in vivo studies demonstrated a role for AHR in EPFR-induced pulmonary Th17 responses including neutrophilic inflammation.

Spermidine protects intestinal mucosal barrier function in mice colitis via the AhR/Nrf2 and AhR/STAT3 signaling pathways

International immunopharmacology

2023 Apr 25

Yan, B;Mao, X;Hu, S;Wang, S;Liu, X;Sun, J;
PMID: 37104918 | DOI: 10.1016/j.intimp.2023.110166

Aryl hydrocarbon receptor (AhR) activation promotes intestinal barrier repair and enhances the gut mucosal barrier function in inflammatory bowel diseases (IBD). Spermidine is beneficial in several murine models of IBD and may affect AhR activity. However, the precise effects of spermidine on the intestinal barrier and AhR remain unclear. This study was designed to investigate whether spermidine affects AhR and gut barrier function in IBD models as well as, its underlying mechanism.We used dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mice, as well as, Caco2 cells incubated with TNF-α and IFN-γ to establish multiple IBD models, followed by spermidine intervention. Alcian blue/Periodic acid-Schiff (AB/PAS) staining, Fluorescein isothiocyanate (FITC)-dextran permeability assay, transepithelial electrical resistance (TER), tight junction protein (TJs) expression, and 16S rRNA scope in situ hybridization were performed to assess intestinal barrier function. AhR expression and the associated pathways were measured. AhR-targeted adeno-associated virus (AAV) and siRNA were used to explore the related molecular mechanisms.Spermidine significantly attenuated the increased intestinal permeability, decreased TER, abnormal distribution of TJs in colitis, and bacterial translocation from the gut tract. Additionally, it significantly increased AhR and Nrf2 expression and inhibited STAT3 phosphorylation. However, the protective effects of spermidine and the related alterations in pathway proteins were largely abolished by the specific inhibition of AhR.Our study demonstrated that spermidine rescues intestinal barrier defects in mice with colitis via the AhR-Nrf2 and AhR-STAT3 pathways, providing a potential therapeutic agent for IBD and other conditions associated with dysregulated gut barrier function.
Orchiectomy Sensitizes Cortical Bone in Male Mice to the Harmful Effects of Kynurenine

papers.ssrn.com

2023 Apr 11

Bensreti, H;Yu, K;Alhamad, D;Shaver, J;Kaiser, H;Zhong, R;Whichard, W;Parker, E;Grater, L;Faith, H;Johnson, M;Cooley, M;Fulzele, S;Hill, W;Isales, C;Hamrick, M;McGee-Lawrence, M;
| DOI: 10.2139/ssrn.4409572

Kynurenine (Kyn) is a tryptophan metabolite that increases with age and promotes musculoskeletal dysfunction. We previously found a sexually dimorphic pattern in how Kyn affects bone, with harmful effects more prevalent in females than males. This raises the possibility that male sex steroids might exert a protective effect that blunts the effects of Kyn in males. To test this, orchiectomy (ORX) or sham surgeries were performed on 6-month-old C57BL/6 mice, after which mice received Kyn (10mg/kg) or vehicle via intraperitoneal injection, once daily, 5x/week, for four weeks. Bone histomorphometry, DXA, microCT, and serum marker analyses were performed after sacrifice. In vitro studies were performed to specifically test the effect of testosterone on activation of aryl hydrocarbon receptor (AhR)-mediated signaling by Kyn in mesenchymal-lineage cells. Kyn treatment reduced cortical bone mass in ORX- but not sham-operated mice. Trabecular bone was unaffected. Kyn’s effects on cortical bone in ORX mice were attributed primarily to enhanced endosteal bone resorption activity. Bone marrow adipose tissue was increased in Kyn-treated ORX animals but was unchanged by Kyn in sham-operated mice. ORX surgery increased mRNA expression of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1a1 in the bone, suggesting a priming and/or amplification of AhR signaling pathways. Mechanistic in vitro studies revealed that testosterone blunted Kyn-stimulated AhR transcriptional activity and Cyp1a1 expression in mesenchymal-linage cells. These data suggest a protective role for male sex steroids in blunting the harmful effects of Kyn in cortical bone. Therefore, testosterone may play an important role in regulating Kyn/AhR signaling in musculoskeletal tissues, suggesting crosstalk between male sex steroids and Kyn signaling may influence age-associated musculoskeletal frailty.
A230 THE ROLE OF THE MICROBIOTA IN NOCICEPTOR DEVELOPMENT AND PAIN SENSITIVITY

Journal of the Canadian Association of Gastroenterology

2022 Feb 21

Abdullah, N;Defaye, M;Hassan, A;Cumenal, M;Iftinca, M;Young, D;Ohland, C;Dufour, A;McCoy, K;Altier, C;
| DOI: 10.1093/jcag/gwab049.229

Background Pain is the most common cause of disability in IBD. What causes inter-individual variability in chronic pain after successful treatment of inflammation remains elusive. We have shown that activation of TRPV1+ colonic nociceptors is essential for the establishment of persistent pain in DSS colitis. Nociceptor development coincides with microbial colonization, while early life dysbiosis can lead to visceral hypersensitivity in adulthood. Whether the microbiota dictates nociceptor development and pain susceptibility remains unknown. Here we test the hypothesis that the microbiota programs nociceptor specification during early development, rendering them more susceptible to sensitization later in life. We have identified the aryl hydrocarbon receptor (AHR) that senses bacterial-derived metabolites as a candidate target that orchestrates transcriptional regulation in nociceptors. Aims We investigated the developmental regulation of nociceptors by the microbiome and how it influences pain sensitivity. We will determine the effects of AHR activation on nociceptor lineage and function as well as the long term impact of AHR signaling on pain sensitivity. Methods We have developed a germ-free (GF) TRPV1-GFP reporter mouse that was used to phenotype and visualise TRPV1+ nociceptors in the absence of a microbiota. We will isolate TRPV1+ neurons by FACS to identify genes that are under the control of the microbiota and to characterise the phosphoproteome of TRPV1+ nociceptors in GF conditions. Finally, we will investigate the role of AHR signaling in nociceptors both acutely and during development. Results We showed a reduction in thermal pain threshold and a reduction in capsaicin test responses in GF mice. The number and size of DRG neurons was unchanged in GF mice. Examination of molecular markers for peptidergic (CGRP) and non-peptidergic (IB4) neurons did not show a difference. Finally, there was no difference in the expression of TRPV1, suggesting post-translational modification of the channel. In cultured DRG neurons, we found a decrease in capsaicin induced action potentials and a decrease in the amplitude of the capsaicin response in GF mice. Using RNAscope, we showed that TRPV1+ neurons express AHR. Conclusions Our results highlight the importance of bacterial composition in regulating the development of nociceptors and pain sensitivity in adulthood. Furthermore, we are the first to demonstrate the expression of AHR in sensory neurons. These findings point to a role of the microbiota in programming nociceptors during development. My work will advance our understanding of the role of commensal bacteria in regulating pain and could lead to recommendations for the treatment of neonates in early life to reduce their risk of developing chronic pain later in life. Funding Agencies CAG, CIHR
RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma

Respiratory research

2021 May 22

Lamb, D;De Sousa, D;Quast, K;Fundel-Clemens, K;Erjefält, JS;Sandén, C;Hoffmann, HJ;Kästle, M;Schmid, R;Menden, K;Delic, D;
PMID: 34022896 | DOI: 10.1186/s12931-021-01743-7

RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.
Molecular profiling of enteric nervous system cell lineages

Nature protocols

2022 Jun 08

Obata, Y;Castaño, Á;Fallesen, TL;Bon-Frauches, AC;Boeing, S;Huseynova, A;McCallum, S;Lasrado, R;Heanue, TA;Pachnis, V;
PMID: 35676375 | DOI: 10.1038/s41596-022-00697-4

The enteric nervous system (ENS) is an extensive network of enteric neurons and glial cells that is intrinsic to the gut wall and regulates almost all aspects of intestinal physiology. While considerable advancement has been made in understanding the genetic programs regulating ENS development, there is limited understanding of the molecular pathways that control ENS function in adult stages. One of the limitations in advancing the molecular characterization of the adult ENS relates to technical difficulties in purifying healthy neurons and glia from adult intestinal tissues. To overcome this, we developed novel methods for performing transcriptomic analysis of enteric neurons and glia, which are based on the isolation of fluorescently labeled nuclei. Here we provide a step-by-step protocol for the labeling of adult mouse enteric neuronal nuclei using adeno-associated-virus-mediated gene transfer, isolation of the labeled nuclei by fluorimetric analysis, RNA purification and nuclear RNA sequencing. This protocol has also been adapted for the isolation of enteric neuron and glia nuclei from myenteric plexus preparations from adult zebrafish intestine. Finally, we describe a method for visualization and quantification of RNA in myenteric ganglia: Spatial Integration of Granular Nuclear Signals (SIGNS). By following this protocol, it takes ~3 d to generate RNA and create cDNA libraries for nuclear RNA sequencing and 4 d to carry out high-resolution RNA expression analysis on ENS tissues.
ACE2 expression is regulated by AhR in SARS-CoV-2-infected macaques

Cellular & molecular immunology

2021 Apr 01

Lv, J;Yu, P;Wang, Z;Deng, W;Bao, L;Liu, J;Li, F;Zhu, Q;Zhou, N;Lv, Q;Wang, G;Wang, S;Zhou, Y;Song, J;Tong, WM;Liu, Y;Qin, C;Huang, B;
PMID: 33795851 | DOI: 10.1038/s41423-021-00672-1

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?