ACD can configure probes for the various manual and automated assays for ADRB2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
2023 May 01
Zhang, Z;Yang, L;Li, Y;Sun, D;Chen, R;Dou, S;Liu, T;Zhang, S;Zhou, Q;Xie, L;
PMID: 36931034 | DOI: 10.1016/j.biopha.2023.114523
Elife.
2017 Jun 20
Paeger L, Karakasilioti I, Altmüller J, Frommolt P, Brüning J, Kloppenburg P.
PMID: 28632132 | DOI: 10.7554/eLife.25770
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and β- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.
Int J Neuropsychopharmacol.
2017 Dec 05
Zhu H, Zhou Y, Liu Z, Chen X, Li Y, Liu X, Ma L.
PMID: 29216351 | DOI: 10.1093/ijnp/pyx104
Abstract
BACKGROUND:
Drug memories become labile and reconsolidated after retrieval by presentation of environmental cues (conditioned stimulus, CS) or drugs (unconditioned stimulus, US). Whether CS- and US-retrieval trigger different memory reconsolidation processes is not clear.
METHODS:
Protein synthesis inhibitor or β-AR antagonist was systemically administrated or intra-central amygdala (CeA) infused immediately after cocaine re-exposure in cocaine-conditioned place preference (CPP) or self-administration (SA) mice models. β-ARs were conditional knockout in the CeA to further confirm the role of β-AR in cocaine re-exposure-induced memory reconsolidation of cocaine-CPP.
RESULTS:
Cocaine re-exposure triggered de novo protein synthesis dependent memory reconsolidation of cocaine-CPP. Cocaine-priming-induced reinstatement was also impaired with post cocaine-retrieval manipulation, in contrast to the relapse behavior with post context-retrieval manipulation. Cocaine-retrieval, but not context-retrieval, induced CeA activation. Protein synthesis inhibitor or β1-AR antagonist infused in the CeA after cocaine-retrieval, but not context-retrieval, inhibited memory reconsolidation and reinstatement. β1-AR conditional knockout in the CeA suppressed cocaine-retrieval triggered memory reconsolidation and reinstatement of cocaine-CPP. β1-AR antagonism after cocaine-retrieval also impaired reconsolidation and reinstatement of cocaine-SA.
CONCLUSIONS:
Cocaine reward memory triggered by US-retrieval is distinct from CS-retrieval. US-retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the CeA. Post US-retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction.
Neuron
2018 Nov 08
Hoffman BU, Baba Y, Griffith TN, Mosharov EV, Woo SH, Roybal DD, Karsenty G, Patapoutian A, Sulzer D, Lumpkin EA.
PMID: - | DOI: 10.1016/j.neuron.2018.10.034
Epithelial-neuronal signaling is essential for sensory encoding in touch, itch, and nociception; however, little is known about the release mechanisms and neurotransmitterreceptors through which skin cells govern neuronal excitability. Merkel cells are mechanosensory epidermal cells that have long been proposed to activate neuronal afferents through chemical synaptic transmission. We employed a set of classical criteria for chemical neurotransmission as a framework to test this hypothesis. RNA sequencing of adult mouse Merkel cells demonstrated that they express presynaptic molecules and biosynthetic machinery for adrenergic transmission. Moreover, live-cell imaging directly demonstrated that Merkel cells mediate activity- and VMAT-dependent release of fluorescent catecholamine neurotransmitter analogs. Touch-evoked firing in Merkel-cell afferents was inhibited either by pre-synaptic silencing of SNARE-mediated vesicle release from Merkel cells or by neuronal deletion of β2-adrenergic receptors. Together, these results identify both pre- and postsynaptic mechanisms through which Merkel cells excite mechanosensory afferents to encode gentle touch.
Communications biology
2022 Oct 17
Cheng, D;Wu, J;Yan, E;Fan, X;Wang, F;Ma, L;Liu, X;
PMID: 36253525 | DOI: 10.1038/s42003-022-04051-y
NPJ Parkinson's disease
2022 May 24
Patterson, JR;Hirst, WD;Howe, JW;Russell, CP;Cole-Strauss, A;Kemp, CJ;Duffy, MF;Lamp, J;Umstead, A;Kubik, M;Stoll, AC;Vega, IE;Steece-Collier, K;Chen, Y;Campbell, AC;Nezich, CL;Glajch, KE;Sortwell, CE;
PMID: 35610264 | DOI: 10.1038/s41531-022-00322-x
bioRxiv : the preprint server for biology
2023 Feb 05
Su, Y;Xu, J;Zhu, Z;Yu, H;Nudell, V;Dash, B;Moya, EA;Ye, L;Nimmerjahn, A;Sun, X;
PMID: 36778350 | DOI: 10.1101/2023.02.04.527145
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com