Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for P53

ACD can configure probes for the various manual and automated assays for P53 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for P53 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (3)
  • Image gallery (0)
Refine Probe List

Content for comparison

RNAscope™ 2.5 VS Probe - V-HSV2-HG52-LAT-C2
RNAscope™ HiPlex CS Probe - Mm-Siah1a-T2
Compare SelectedClear

Gene

  • TBD (8) Apply TBD filter
  • HPV E6/E7 (4) Apply HPV E6/E7 filter
  • HPV HR18 (3) Apply HPV HR18 filter
  • CDKN1A (2) Apply CDKN1A filter
  • Trp53 (2) Apply Trp53 filter
  • Lgr5 (2) Apply Lgr5 filter
  • MDM2 (2) Apply MDM2 filter
  • (-) Remove HPV18 filter HPV18 (2)
  • HPV-HR18 (2) Apply HPV-HR18 filter
  • OLFM4 (2) Apply OLFM4 filter
  • p21 (2) Apply p21 filter
  • lincRNA-p21 (2) Apply lincRNA-p21 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • 18 (2) Apply 18 filter
  • 31 (2) Apply 31 filter
  • 33 (2) Apply 33 filter
  • MEG3 (1) Apply MEG3 filter
  • Wnt4 (1) Apply Wnt4 filter
  • Axin2 (1) Apply Axin2 filter
  • Fgfr3 (1) Apply Fgfr3 filter
  • Rspo1 (1) Apply Rspo1 filter
  • Rspo3 (1) Apply Rspo3 filter
  • CLU (1) Apply CLU filter
  • Ccl2 (1) Apply Ccl2 filter
  • DCN (1) Apply DCN filter
  • Gata3 (1) Apply Gata3 filter
  • PTPRD (1) Apply PTPRD filter
  • KIT (1) Apply KIT filter
  • PECAM1 (1) Apply PECAM1 filter
  • MSI2 (1) Apply MSI2 filter
  • PPM1D (1) Apply PPM1D filter
  • H19 (1) Apply H19 filter
  • PTH (1) Apply PTH filter
  • MSI1 (1) Apply MSI1 filter
  • Neurod6 (1) Apply Neurod6 filter
  • Ccnb1 (1) Apply Ccnb1 filter
  • Cav1 (1) Apply Cav1 filter
  • Gpr87 (1) Apply Gpr87 filter
  • NRAS (1) Apply NRAS filter
  • HPV16 (1) Apply HPV16 filter
  • TARDBP (1) Apply TARDBP filter
  • UCA1 (1) Apply UCA1 filter
  • STAT3 (1) Apply STAT3 filter
  • Fas (1) Apply Fas filter
  • Ubc (Ubiquitin C) (1) Apply Ubc (Ubiquitin C) filter
  • PD-L1 (1) Apply PD-L1 filter
  • HER2 (1) Apply HER2 filter
  • RAD51-AS1 (1) Apply RAD51-AS1 filter
  • Atp2a2 (1) Apply Atp2a2 filter
  • Myh7 (1) Apply Myh7 filter

Product

  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter

Research area

  • Cancer (1) Apply Cancer filter
  • Development (1) Apply Development filter
  • HPV (1) Apply HPV filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter

Category

  • Publications (3) Apply Publications filter
Active human papillomavirus involvement in Barrett's dysplasia and oesophageal adenocarcinoma is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway

Int J Cancer.

2017 Jul 19

Rajendra S, Yang T, Xuan W, Sharma P, Pavey D, Soon Lee C, Le S, Collins J, Wang B.
PMID: 28722212 | DOI: 10.1002/ijc.30896

We have previously demonstrated that transcriptionally active high-risk HPV (hr-HPV) is strongly incriminated in Barrett's dysplasia (BD) and oesophageal adenocarcinoma (OAC) using mainly fresh frozen tissue. This study aimed to identify biomarkers of active HPV infection in Barrett's metaplasia, (BM)/BD/OAC by immunohistochemical staining (IHC) of formalin-fixed paraffin embedded (FFPE) tissue for aberrations of p53 and the retinoblastoma (pRb) pathway which are targets for the viral oncoproteins, E6/E7 respectively. Prospectively, BM(n=81)/BD(n=72)/OAC(n=65) FFPE specimens were subjected to IHC staining for pRb, p16INK4A , cyclin D1 , p53 and RNA in-situ hybridization (ISH) for E6/E7 transcripts. HPV DNA was determined via PCR in fresh frozen specimens. Viral load measurement (real-time PCR) and Next Generation Sequencing of TP53 was also performed. Of 218 patients, 56 were HPV DNA positive [HPV16 (n=42), 18 (n=13), 6 (n=1)]. Viral load was low. Transcriptionally active HPV (DNA+ /RNA+ ) was only found in the dysplastic and adenocarcinoma group (n=21). The majority of HPV DNA+ /RNA+ BD/OAC were characterized by p16INK4Ahigh (14/21, 66.7%), pRblow (15/21, 71.4%) and p53low (20/21, 95%) and was significantly different to controls [combination of HPV DNA- /RNA- (n=94) and HPV DNA+ /RNA- cohorts (n=22)]. p53low had the strongest association with DNA+ /RNA+ oesophageal lesions (OR=23.5, 95% CI=2.94-187.8, p=0.0029). Seventeen HPV DNA+ /RNA+BD/OAC identified as p53low, were sequenced and all but one exhibited wild-type status. pRblow /p53low provided the best balance of strength of association (OR=8.0, 95% CI=2.6-25.0, p=0.0003) and sensitivity (71.4%)/specificity (71.6%) for DNA+ /RNA+ BD/OAC. Active HPV involvement in BD/OAC is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway.

Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage

Cell reports

2021 Dec 14

Chesnokova, V;Zonis, S;Apostolou, A;Estrada, HQ;Knott, S;Wawrowsky, K;Michelsen, K;Ben-Shlomo, A;Barrett, R;Gorbunova, V;Karalis, K;Melmed, S;
PMID: 34910915 | DOI: 10.1016/j.celrep.2021.110068

Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation. Organoids cultured up to 4 months exhibit aging markers, p16, and SA-β-galactosidase and decreased telomere length, as well as DNA damage accumulation, with increased npGH, suppressed p53, and attenuated DDR. Suppressing GH in aged organoids increases p53 and decreases DNA damage. WT mice exhibit age-dependent colon DNA damage accumulation, while in aged mice devoid of colon GH signaling, DNA damage remains low, with elevated p53. As age-associated npGH induction enables a pro-proliferative microenvironment, abrogating npGH signaling could be targeted as anti-aging therapy by impeding DNA damage and age-related pathologies.
Clinicopathologic features of non-keratinizing carcinoma of nasal cavity and paranasal sinus

Zhonghua Bing Li Xue Za Zhi.

2016 Sep 08

Zhao YH, Liu HG.
PMID: 27646894 | DOI: 10.3760/cma.j.issn.0529-5807.2016.09.010.

OBJECTIVE:

To study the clinicopathologic features, immunophenotype, differential diagnosis and prognosis of non-keratinizing carcinoma of nasal cavity and paranasal sinus.

METHODS:

Four hundred and forty-one cases of squamous cell carcinoma of the nasal cavity and sinuses diagnosed in Beijing Tongren Hospital from January 2008 to August 2015 were included. Twenty-six cases of non-keratinizing carcinomas were selected. The histopathologic features and the clinicopathologic data of these twenty-six cases were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of CK, vimentin, CK5/6, CK7, CK8/18, p16, p53, Ki-67 etc. In situ hybridization was used to detect Epstein-Barr virus mRNA(EBER), and flow-through hybridization was used to evaluate the presence of human papilloma virus (HPV). One of the cases which HPV is positive was detected by HPV in situ hybridization and RNAscope technology.

RESULTS:

The mean age for the twenty-six patients (16 males, 10 females) was 51.2 years (range 22 to 79 years). Three patients had a history of inverted papilloma.Microscopically the tumors showed invasive papillary and inverted growth, and formed solid cell nests with different sizes. It was similar to papillary carcinoma of the urinary tract: the nuclei of the tumor were rounded and the nucleolus are clear. Three cases displayed transition between normal epithelium to neoplastic cells; in two cases (2/26), some tumor cells were spindle shaped. Twenty cases (20/20) were strongly positive for CK, p63; 17 cases (17/20) were strongly positive for CK5/6 and three cases (3/20) were focally positive. Sixteen cases were strongly positive for CK8/18 and three cases (3/20) were focally positive and one case was negative. Seven cases (7/20) were strongly positive for CK7 and 13 cases (13/20) were negative. Two cases (2/20) were focally positive for vimentin and eighteen (18/20) cases were negative. One case (1/20) was strongly positive for p16 and nineteen cases (19/20) were negative. Nineteen cases (19/20) were positive for p53 and one case (1/20) was negative. Ki-67 index was >50% in 11 cases. Twenty cases (20/20) were negative for AFP, NUT, S-100 protein, HMB45 and Melan A. One case was positive for HPV (6, 11, 16, 18), as detected by in situ hybridization. The HPV18 mRNA was detected by RNAscope technique. In situ hybridization were negative in all twenty cases. The mean follow-up time of the patients in this group was less than 5 years, and the prognosis needs further observation.

CONCLUSIONS:

Non-keratinizing squamous cell carcinoma is a rare neoplasm with distinct morphological characteristics. Its diagnosis is primarily based on the site of lesions and the histological features.Immunohistochemistry staining can aid the diagnosis and differential diagnoses. The tumor may originate from the epithelium of nasal cavity and sinus. This disease has no relation with HPV and EBV infection, and the treatment is primarily surgical excision combined with postoperative radiotherapy.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?