Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for CD8

ACD can configure probes for the various manual and automated assays for CD8 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for Cd8 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (2)
  • Image gallery (0)
Refine Probe List

Content for comparison

RNAscope™ HiPlex Probe - HPV 6-T10
RNAscope™ HiPlex Probe - Hs-CDKN2A-T12
Compare SelectedClear

Gene

  • CXCL10 (5) Apply CXCL10 filter
  • TBD (5) Apply TBD filter
  • CD4 (4) Apply CD4 filter
  • Cd8 (4) Apply Cd8 filter
  • SIV (3) Apply SIV filter
  • Ifng (2) Apply Ifng filter
  • POLR2A (2) Apply POLR2A filter
  • PD-L1 (2) Apply PD-L1 filter
  • Csf3 (1) Apply Csf3 filter
  • CD68 (1) Apply CD68 filter
  • CCL5 (1) Apply CCL5 filter
  • Cd8a (1) Apply Cd8a filter
  • CD3E (1) Apply CD3E filter
  • CD3D (1) Apply CD3D filter
  • CD3G (1) Apply CD3G filter
  • CSF2RB (1) Apply CSF2RB filter
  • CTLA4 (1) Apply CTLA4 filter
  • Ccl2 (1) Apply Ccl2 filter
  • Foxp3 (1) Apply Foxp3 filter
  • Gzmb (1) Apply Gzmb filter
  • Dkk2 (1) Apply Dkk2 filter
  • (-) Remove MYC filter MYC (1)
  • DUSP6 (1) Apply DUSP6 filter
  • Cd163 (1) Apply Cd163 filter
  • SPRY4 (1) Apply SPRY4 filter
  • LIPG (1) Apply LIPG filter
  • IL2RG (1) Apply IL2RG filter
  • LAIR1 (1) Apply LAIR1 filter
  • SLAMF8 (1) Apply SLAMF8 filter
  • MYCN (1) Apply MYCN filter
  • Inhba (1) Apply Inhba filter
  • NLRP3 (1) Apply NLRP3 filter
  • CXCL9 (1) Apply CXCL9 filter
  • HPV E6/E7 (1) Apply HPV E6/E7 filter
  • CD11b (1) Apply CD11b filter
  • HPV HR7 (1) Apply HPV HR7 filter
  • MusPV1 E6/E7 (1) Apply MusPV1 E6/E7 filter
  • ZIKV (1) Apply ZIKV filter
  • Cxcl16 (1) Apply Cxcl16 filter
  • CXCR6 (1) Apply CXCR6 filter
  • C1s1 (1) Apply C1s1 filter
  • Chst4 (1) Apply Chst4 filter
  • MuLV vector RNA (1) Apply MuLV vector RNA filter
  • IFN-g (1) Apply IFN-g filter
  • CD3 (1) Apply CD3 filter
  • Erk5 (1) Apply Erk5 filter
  • MmuPV1 (1) Apply MmuPV1 filter
  • C1S (1) Apply C1S filter
  • PD-1 (1) Apply PD-1 filter
  • RNASE1 (1) Apply RNASE1 filter

Product

  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter

Research area

  • Cancer (2) Apply Cancer filter
  • Inflammation (1) Apply Inflammation filter

Category

  • Publications (2) Apply Publications filter
Myc Cooperates with Ras by Programming Inflammation and Immune Suppression

Cell.

2017 Nov 30

Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI.
PMID: 29195074 | DOI: 10.1016/j.cell.2017.11.013

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.

B7-H3 and B7-H4 expression in phyllodes tumors of the breast detected by RNA in situ hybridization and immunohistochemistry: Association with clinicopathological features and T-cell infiltration.

Tumour Biol. 2018 Nov;40(11):1010428318815032.

2018 Nov 01

Kim GE, Kim NI, Park MH, Lee JS.
PMID: 30486739 | DOI: 10.1177/1010428318815032

Phyllodes tumors are rare biphasic breast tumors with the potential for both local recurrence and distant metastasis. The aberrant expression of B7-H3 and B7-H4 B7 molecules could be potential targets for future development of immunotherapeutic approaches. This work was undertaken to evaluate the expression of B7-H3 and B7-H4 in phyllodes tumors and assess the association with the grade and clinical behavior of phyllodes tumors. In addition, the roles of B7-H3 and B7-H4 in the regulation of tumor immune surveillance were evaluated by assessing the relationship between B7-H3/B7-H4 expression and T-cell infiltration. The messenger RNA and protein expression of B7-H3/B7-H4 were determined by RNAscope in situ hybridization and immunohistochemistry, respectively, in 101 phyllodes tumors (60 benign, 26 borderline, and 15 malignant) using a tissue microarray. Immunohistochemistry for CD3 and CD8 was also performed. B7-H3 messenger RNA and protein appeared to be concentrated mainly in the stromal compartment of phyllodes tumors. However, B7-H4 messenger RNA and protein were undetectable in the stromal compartment of phyllodes tumors. Stromal B7-H3 messenger RNA and protein expression were noted in 10 (16.7%) and 31 (51.7%) of 60 benign phyllodes tumors, 12 (46.1%) and 20 (76.9%) of 26 borderline phyllodes tumors, and 10 (66.7%) and 13 (86.7%) of 15 malignant phyllodes tumors, respectively. Stromal B7-H3 messenger RNA and protein expression increased as phyllodes tumors progressed from benign to borderline and finally to the malignant grade (Pearson's R = 0.411, p < 0.001 and Pearson's R = 0.293, p = 0.003, respectively). The recurrence rate was higher in the stromal B7-H3 messenger RNA or protein-positive group than in the negative group, but this difference was not significant. Stromal B7-H3 protein expression inversely correlated with the densities of CD3+ and CD8+ T-cell infiltrates ( p = 0.001 and p = 0.027, respectively). These results suggest that B7-H3 is involved in the progression of phyllodes tumors and may contribute to their immune surveillance.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?