RNAscope™ HiPlex12 Reagent Kit v2 (488, 550, 650) Assay
with Sample Preparation and Pretreatment

Document Number UM 324419
For Research Use Only. Not for use in diagnostic procedures.

Trademarks
RNAscope, EZ-Batch, and HybEZ are trademarks of Advanced Cell Diagnostics, Inc. All other trademarks belong to their respective owners.

Citing RNAscope in Publications

Disclaimers
Advanced Cell Diagnostics, Inc. reserves the right to change its products and services at any time to incorporate technological developments. This manual is subject to change without notice.

Although this manual has been prepared with every precaution to ensure accuracy, Advanced Cell Diagnostics, Inc. assumes no liability for any errors, omissions, or for any damages resulting from the use of this information.

Copyright
© 2021. Advanced Cell Diagnostics, Inc. All rights reserved.
Contents

Chapter 1. Product Information

- **About this guide** .. 6
- **Product description** .. 6
 - Background ... 6
 - Overview ... 6
 - Compatible sample types .. 7
- **Kit contents and storage** ... 7
 - RNAscope HiPlex Probes ... 7
 - RNAscope HiPlex Reagent Kit ... 9
- **Required materials and equipment** 10
 - HybEZ Hybridization System .. 10
 - User-supplied materials ... 11

Chapter 2. Before You Begin

- **Important procedural guidelines** 13

Chapter 3. Prepare and Pretreat Samples

- **FFPE sample preparation and pretreatment** 14
 - **Workflow** .. 14
 - **Materials required** .. 15
 - Prepare FFPE tissue sections .. 15
 - Bake slides .. 16
 - Dепaraffinize FFPE sections ... 16
 - Prepare pretreatment materials ... 17
 - Perform target retrieval using the steamer 17
 - Create a barrier ... 18
 - Apply RNAscope Protease III .. 19
 - Proceed to the RNAscopeAssay ... 19
- **Fixed-frozen tissue sample preparation and pretreatment** 20
 - **Workflow** .. 20
 - **Materials required** .. 21
 - Fix samples .. 21
 - Freeze tissues ... 21
 - Prepare sections .. 22
 - Prepare pretreatment materials ... 22
 - Perform target retrieval using the steamer 23
 - Create a barrier ... 24
 - Apply RNAscope Protease III .. 24
 - Fresh-frozen sample preparation and pretreatment 25
Chapter 4. RNAscope HiPlex Assay v2 (12-Plex) .. 29

Workflow ... 29
Materials required for the assay ... 32
Prepare the assay .. 32
Prepare 1X Wash Buffer .. 32
Prepare 4X SSC .. 32
Prepare PBST (0.5% Tween) .. 33
Prepare probes .. 33
Equilibrate reagents .. 33
Equilibrate and prepare RNAscope HiPlex FFPE Reagent (optional for fixed-frozen and fresh-frozen samples) .. 33
Run the assay ... 34
Hybridize probe ... 34
Hybridize RNAscope HiPlex Amp 1 ... 34
Hybridize RNAscope HiPlex Amp 2 ... 35
Hybridize RNAscope HiPlex Amp 3 ... 35
Apply RNAscope HiPlex FFPE Reagent to reduce autofluorescence (optional for fresh-frozen and fixed-frozen samples) 35
Hybridize RNAscope HiPlex Fluoro T1–T3 v2.. 35
Counterstain and mount the slides ... 36
Image the slides for Round 1 .. 36
Equilibrate reagents .. 36
Cleave the fluorophores ... 36
Hybridize RNAscope HiPlex Fluoro T4–T6 v2.. 37
Mount the slides ... 38
Image the slides for Round 2 .. 38
Equilibrate reagents .. 38
Cleave the fluorophores ... 38
Hybridize RNAscope HiPlex Fluoro T7–T9 v2.. 39
Counterstain and mount the slides ... 40
Image the slides for Round 3 .. 40
Equilibrate reagents .. 40
Cleave the fluorophores ... 40
Hybridize RNAscope HiPlex Fluoro T10–T12 v2 ... 41
Mount the slides ... 41
Image the slides for Round 4 .. 42
Image registration using RNAscope HiPlex Registration Software v2.0 .. 42
Evaluate the samples .. 44
Evaluate the samples .. 44
Fluorescent Imaging Recommendations .. 44
Preparation of specimens ... 44
Example image ... 44
Example image ... 44
Troubleshooting .. 45
Appendix A. Reagent Volume Guidelines .. 46
Appendix A. Reagent Volume Guidelines .. 46
Determine reagent volume ... 46
Appendix B. Manual Target Retrieval ... 47
Appendix B. Manual Target Retrieval ... 47
Materials required ... 47
Prepare 1X RNAscope Target Retrieval Reagents ... 47
Apply RNAscope Target Retrieval Reagents .. 47
Appendix C. Tissue Pretreatment Recommendation .. 49
Appendix C. Tissue Pretreatment Recommendation .. 49
Tissue pretreatment recommendation ... 49
Tissue-specific pretreatment conditions .. 49
Appendix D. Using the EZ-Batch Slide Holder and Wash Tray ... 52
Appendix D. Using the EZ-Batch Slide Holder and Wash Tray ... 52
Load the slides in the ACD EZ-Batch Slide Holder ... 52
Wash slides in the Wash Tray .. 53
Appendix E. Safety ... 54
Appendix E. Safety ... 54
Chemical safety ... 54
Biological hazard safety ... 54
Documentation and support .. 56
Documentation and support .. 56
Obtaining SDSs .. 56
Obtaining support ... 56
Obtaining support ... 56
Contact information .. 56
Contact information .. 56
Limited product warranty .. 56
Limited product warranty .. 56
Chapter 1. Product Information

Before using this product, read and understand the information in Appendix E. Safety in this document.

IMPORTANT! We recommend reading the entire user manual before beginning any protocols.

About this guide

This user manual provides guidelines and protocols to use the RNAscope HiPlex12 Reagent Kit v2 (488, 550, 650) (Cat. No. 324419) with fluorophores AF488, Dylight550, and Dylight650 on fresh-frozen sections, fixed-frozen sections, FFPE sections, and cultured adherent cells mounted on slides. Visit www.acdbio.com/technical-support/user-manuals to download a sample preparation user guide or technical note for other sample types.

Product description

Background

The RNAscope HiPlex 12 Reagent Kit (488, 550, 650) uses a novel and proprietary method of in situ hybridization (ISH) to simultaneously visualize up to 12 different RNA targets per cell in samples mounted on slides.

The assay is based on ACD’s patented signal amplification and background suppression technology and incorporates multiplexed signal amplification systems, which enable users to investigate expression as well as positional relationship between multiple genes within a cellular context.

Overview

RNAscope HiPlex Assay v2 reagents are provided in convenient Ready-To-Use dropper bottles allowing a simple, nearly pipette-free workflow. Properly prepared samples are first pretreated, and then RNA-specific probes designed for different detection tails/channels are hybridized to multiple RNAs (up to 12 RNA targets). After a series of highly effective and specific signal amplifications, single RNA transcripts for up to three target genes at a time can be visualized as punctate dots in three distinct fluorescent channels using cleavable versions of the fluorophores AF488, Dylight 550 and Dylight650. These dots are visible with an epifluorescence microscope and the appropriate filters. After imaging, the fluorophores from the first three targets are cleaved off and the next three targets are labeled and imaged. Images from the various rounds can be merged using the RNAscope HiPlex Registration Software v2.0 (refer to the RNAscope HiPlex Image Registration Software User Manual Doc. No. 300065-USM). The RNAscope HiPlex 12 Reagent (488, 550, 650; Cat. No. 324419) using fluorophores AF488, Dylight 550, and Dylight650 allows you to perform four rounds of fluorescent target labeling and imaging. The target probe hybridization, signal amplification, and the first round
of signal detection can be completed in 7–8 hours. Each subsequent round of signal detection requires an additional hour.

Compatible sample types

The RNAscope HiPlex Assay v2 is compatible with fresh-frozen tissue, cultured adherent cells, fixed-frozen tissue, and FFPE tissue.

Use the guide below to determine the appropriate pretreatment reagent from the Universal Pretreatment Reagents (Cat No. 322380) or the RNAscope Protease III & IV Reagents (Cat. No. 322340) and RNAscope Target Retrieval Reagents (Cat. No. 322000).

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Pretreatment Kit</th>
<th>Pretreatment Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh frozen</td>
<td>RNAscope Protease IV</td>
<td>322336</td>
</tr>
<tr>
<td>Fixed frozen</td>
<td>RNAscope Target Retrieval (10X)</td>
<td>322000</td>
</tr>
<tr>
<td></td>
<td>RNAscope Protease III</td>
<td>322337</td>
</tr>
<tr>
<td>FFPE</td>
<td>RNAscope Target Retrieval (10X)</td>
<td>322000</td>
</tr>
<tr>
<td></td>
<td>RNAscope Protease III</td>
<td>322337</td>
</tr>
<tr>
<td>Cultured adherent cells</td>
<td>RNAscope Protease III</td>
<td>322337</td>
</tr>
</tbody>
</table>

In terms of relative strength, Protease III < Protease IV.

Please contact technical support at support.acd@bio-techne.com if you have any questions.

Kit contents and storage

The RNAscope HiPlex Assay v2 requires the RNAscope HiPlex Probes and the RNAscope HiPlex Reagent Kit. Probes and reagent kits are available separately.

RNAscope HiPlex Probes

The RNAscope HiPlex Probes consist of user-specified Target Probes and Positive and Negative Control Probes. Visit https://acdbio.com/products to find a gene-specific target probe. Visit http://www.acdbio.com/control-slides-and-probes to order appropriate control probes. Each target probe contains a mixture of short oligonucleotides designed to bind to a specific target RNA and is detectable in one of four color channels specified in the following table:

<table>
<thead>
<tr>
<th>Detection (4 rounds)</th>
<th>Probe Tail/Channel</th>
<th>Fluorophore</th>
<th>Emission</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>T1</td>
<td>Alexa Fluor 488</td>
<td>520 +/- 10nm</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Dylight 550</td>
<td>562 +/- 10 nm</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Dylight 650</td>
<td>652 +/- 10 nm</td>
<td>Far Red</td>
</tr>
<tr>
<td>Round 2</td>
<td>T4</td>
<td>Alexa Fluor 488</td>
<td>520 +/- 10nm</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>T5</td>
<td>Dylight 550</td>
<td>562 +/- 10 nm</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>T6</td>
<td>Dylight 650</td>
<td>652 +/- 10 nm</td>
<td>Far Red</td>
</tr>
<tr>
<td>Round 3</td>
<td>T7</td>
<td>Alexa Fluor 488</td>
<td>520 +/- 10nm</td>
<td>Green</td>
</tr>
</tbody>
</table>
You can select different combinations of targets in the RNAscope HiPlex Assay v2. Each target probe must be assigned to a different probe channel/tail (T1–T12). All RNAscope HiPlex target probes are shipped as 50X concentrated stocks, which need to be diluted in RNAscope HiPlex Probe Diluent (Cat. No. 324301) 1:50.

IMPORTANT! Do not use RNAscope HiPlex probes for ANY other RNAscope assays.

Each probe is sufficient for staining ~10 sections, each with an area of approximately 20 mm x 20 mm (0.75” x 0.75”). Larger tissue sections will result in fewer tests. The probes have a shelf life of two years from the manufacturing date when stored as indicated in the following tables:

<table>
<thead>
<tr>
<th>Target Probe</th>
<th>Reagent</th>
<th>Cat. No.</th>
<th>Content</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Target Probe – {species} – {gene} – T1…T12</td>
<td>Various</td>
<td>50X probe</td>
<td>40 µL x 1 tube</td>
<td>2–8°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Probes</th>
<th>Reagent</th>
<th>Cat. No.</th>
<th>Content</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>RNAscope HiPlex12 Positive Control Probe - Mm v2</td>
<td>324433</td>
<td>RTU mixture of 12 probes targeting housekeeping gene Polr2a, PPIB, Ubc, Hprt, Actb, Sdha, Tfr2, Ldha, Gapdh, Rpl5, Ywhaz, and Rpl28 with T1- T12 tails respectively in each of the 12 channels.</td>
<td>2 mL x 1 bottle</td>
<td>2–8°C</td>
</tr>
</tbody>
</table>
Control Probes

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Cat. No.</th>
<th>Content</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAscope HiPlex12 Positive Control Probe-Hs</td>
<td>324311</td>
<td>RTU mixture of 12 probes targeting housekeeping gene Polr2a, PPIB, UBC, HPRT1, TUBB, RPL28, RPL5, B2M, ACTB, LDHA-O1, RPLP0-X-RPLP0P2, and GAPDH with T1- T12 tails respectively in each of the 12 channels.</td>
<td>2 mL x 1 bottle</td>
<td>2–8°C</td>
</tr>
<tr>
<td>RNAscope HiPlex12 Positive Control Probe - Rn v2</td>
<td>324434</td>
<td>RTU mixture of 12 probes targeting housekeeping gene Polr2a, PPIB, UBC, HPRT1, Actb, Sdha, Tfrc, Ldha, Gapdh, Rpl5, Ywhaz, and Rpl28 with T1- T12 tails respectively in each of the 12 channels.</td>
<td>2 mL x 1 bottle</td>
<td>2–8°C</td>
</tr>
<tr>
<td>RNAscope HiPlex12 Negative Control Probe</td>
<td>324341</td>
<td>RTU probe targeting a bacterial gene (dapB), with T1- T12 tails respectively in each of the 12 channels.</td>
<td>2 mL x 1 bottle</td>
<td>2–8°C</td>
</tr>
<tr>
<td>RNAscope HiPlex Probe Diluent</td>
<td>324301</td>
<td>RTU probe diluent</td>
<td>2 mL x 1 bottle</td>
<td>2–8°C</td>
</tr>
</tbody>
</table>

RNAscope HiPlex Reagent Kit

Each RNAscope HiPlex Detection Kit provides enough reagents to stain ~20 tissue sections, each with an area of approximately 20 mm x 20 mm (0.75” x 0.75”). Larger tissue sections will result in fewer tests. Please refer to the tables below for the contents of the sub-kits: Pretreatment Kit, Detection Kit, and Wash Buffer Kit etc.

The reagents have a shelf life of nine months from the manufacturating date when stored as indicated in the following tables:
IMPORTANT! Do not interchange the reagent components of the reagent kits, even those having the same name.

Required materials and equipment

The following materials and equipment are needed to perform the RNAscope HiPlex Assay v2.

HybEZ Hybridization System

IMPORTANT! The RNAscope Assay has been qualified using this system only.

Use the HybEZ™ II Hybridization System to perform RNAscope HiPlex Assay v2 hybridization and incubation steps. These steps require humid conditions to prevent sections from drying out.
For instructions on how to use the HybEZ II Hybridization System, refer to the *HybEZ II Hybridization System User Manual* (Doc. No. 321710-USM) available at www.acdbio.com/technical-support/user-manuals and view the training video at www.acdbio.com/technical-support/learn-more. The system contains the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HybEZ II Oven (110 or 220 VAC)</td>
<td>1 oven</td>
<td>321710 or 321720</td>
</tr>
<tr>
<td>HybEZ Humidity Control Tray (with lid)</td>
<td>1 tray</td>
<td>310012</td>
</tr>
<tr>
<td>ACD EZ-Batch™ Wash Tray</td>
<td></td>
<td>321717</td>
</tr>
<tr>
<td>ACD EZ-Batch Slide Holder</td>
<td></td>
<td>321716</td>
</tr>
<tr>
<td>HybEZ Humidifying Paper</td>
<td>2 sheets</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: To order HybEZ Humidifying Paper Pack, 15 sheets, use Cat. No. 310015

User-supplied materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Supplier</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImmEdge™ Hydrophobic Barrier Pen (required)</td>
<td>Vector Laboratory</td>
<td>H-4000</td>
</tr>
<tr>
<td>Xylene</td>
<td>Fisher Scientific/MLS</td>
<td>X3P-1GAL</td>
</tr>
<tr>
<td>10% Neutral Buffered Formalin (NBF)/4% Paraformaldehyde (PFA)</td>
<td>MLS</td>
<td>—</td>
</tr>
<tr>
<td>100% alcohol (EtOH)</td>
<td>American Master Tech Scientific/MLS*</td>
<td>ALREAGAL</td>
</tr>
<tr>
<td>10X Phosphate Buffered Saline (PBS)</td>
<td>Fisher Scientific/MLS*</td>
<td>BP3991</td>
</tr>
<tr>
<td>10% Tween</td>
<td>Fisher Scientific/MLS*</td>
<td>P185115</td>
</tr>
<tr>
<td>20X SSC</td>
<td>Fisher Scientific/MLS*</td>
<td>BP1325</td>
</tr>
<tr>
<td>Tissue-Tek® Vertical 24 Slide Racks (or other slide racks or holders)</td>
<td>StatLab/MLS</td>
<td>LWS2124</td>
</tr>
<tr>
<td>Tissue-Tek Staining Dishes (or similar containers)</td>
<td>StatLab/MLS</td>
<td>LWS20WH</td>
</tr>
<tr>
<td>Paraffin wax</td>
<td>MLS</td>
<td>—</td>
</tr>
<tr>
<td>Microtome</td>
<td>MLS</td>
<td>—</td>
</tr>
<tr>
<td>Oster® Steamer Model 5712, Black and Decker Steamer HS3000, the Braun Multiquick FS 20 Steamer, or the Hamilton Beach Steamer</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Digital thermometer</td>
<td>MLS</td>
<td>—</td>
</tr>
<tr>
<td>Description</td>
<td>Supplier</td>
<td>Cat. No.</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>ProLong Gold Antifade Mountant</td>
<td>Fisher Scientific/MLS*</td>
<td>P36930</td>
</tr>
<tr>
<td>Cover Glass, 24 x 50 mm</td>
<td>Fisher Scientific/MLS</td>
<td>12-545-F</td>
</tr>
<tr>
<td>Carboy (>3L)</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Water bath or incubator, capable of holding temperature at 40 +/- 1°C</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Distilled water</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Tubes (various sizes)</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Paper towel or absorbent paper</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Fluorescent microscope with filter set:</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Ex 358 nm/Em 461 nm (DAPI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex 501 nm/Em 523 nm (FITC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex 554 nm/Em 576 nm (Cy3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex 644 nm/Em 669 nm (Cy5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex 740 nm/Em 764 nm (Cy7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum foil (Optional)†</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Forceps, large (Optional)†</td>
<td>MLS</td>
<td>–</td>
</tr>
<tr>
<td>Hot plate (Optional)†</td>
<td>MLS</td>
<td>–</td>
</tr>
</tbody>
</table>

* Major Laboratory Supplier or preferred vendor in North America. For other regions, please check Catalog Numbers with your local lab supplier.
† Required for the alternate target retrieval method in Appendix B on page 47.
Chapter 2. Before You Begin

Prior to running the RNAscope Assay on your samples for the first time, we recommend that you view the video demonstrations available at www.acdbio.com/technical-support/learn-more.

Important procedural guidelines

- Follow the recommended pretreatment conditions for your sample. Refer to our sample preparation and pretreatment user guides available at www.acdbio.com/technical-support/user-manuals.
- Always run positive and negative control probes on your sample to assess sample RNA quality and optimal permeabilization.
- Do not substitute required materials. Assay has been validated with these materials only.
- Follow the protocol exactly for best results.
- Do not let your sections dry out during the procedure unless otherwise indicated.
- Use good laboratory practices and follow all necessary safety procedures. Refer to Appendix E. Safety for more information.
Chapter 3. Prepare and Pretreat Samples

This chapter describes three tissue sample preparation methods: formalin-fixed, paraffin-embedded (FFPE) sample preparation and pretreatment, fixed-frozen sample preparation and pretreatment, and fresh-frozen sample preparation and pretreatment. For other sample types and preparation methods, contact support.acd@bio-techne.com for the latest protocols and guidelines.

IMPORTANT! We highly recommend following these guidelines. We cannot guarantee assay results with other preparation methods.

FFPE sample preparation and pretreatment

For suboptimally prepared samples, you may need to optimize pretreatment conditions. Refer to Appendix C. Tissue Pretreatment Recommendation on page 49 and to https://acdbio.com/technical-support/solutions.

Workflow

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prepare FFPE tissue sections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTIONAL STOPPING POINT (1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bake slides ~1 HR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTIONAL STOPPING POINT (2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Deparaffinize FFPE sections ~20 MIN</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Prepare pretreatment materials ~30 MIN</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Perform target retrieval ~15–30 MIN</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Create a barrier ~15 MIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTIONAL STOPPING POINT (3)</td>
<td></td>
</tr>
</tbody>
</table>
Apply RNAscope Protease III ~15–30 MIN

Proceed IMMEDIATELY to the HiPlex Assay

Materials required

<table>
<thead>
<tr>
<th>Materials provided by Pretreatment Reagents (Cat. No. 322340 and 322000)</th>
<th>Other Materials and Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RNAscope Target Retrieval Reagents</td>
<td>• 10% Neutral Buffered Formalin (NBF) or fresh 4% PFA</td>
</tr>
<tr>
<td>• RNAscope Protease III</td>
<td>• 1X PBS</td>
</tr>
<tr>
<td></td>
<td>• Paraffin wax</td>
</tr>
<tr>
<td></td>
<td>• Tissue-Tek Clearing Agent Dishes</td>
</tr>
<tr>
<td></td>
<td>• Tissue-Tek Staining Dishes</td>
</tr>
<tr>
<td></td>
<td>• Tissue-Tek Vertical 24 Slide Rack</td>
</tr>
<tr>
<td></td>
<td>• 100% alcohol (EtOH)</td>
</tr>
<tr>
<td></td>
<td>• Xylene</td>
</tr>
<tr>
<td></td>
<td>• Microtome</td>
</tr>
<tr>
<td></td>
<td>• Water bath</td>
</tr>
<tr>
<td></td>
<td>• SuperFrost Plus slides</td>
</tr>
<tr>
<td></td>
<td>• ImmEdge Hydrophobic Pen</td>
</tr>
<tr>
<td></td>
<td>• Drying oven</td>
</tr>
<tr>
<td></td>
<td>• Distilled water</td>
</tr>
<tr>
<td></td>
<td>• Fume hood</td>
</tr>
<tr>
<td></td>
<td>• HybEZ Humidifying System/ACD EZ-Batch Slide Holder and Wash Tray</td>
</tr>
<tr>
<td></td>
<td>• Paper towel or absorbent paper</td>
</tr>
<tr>
<td></td>
<td>• Steamer</td>
</tr>
<tr>
<td></td>
<td>• Steamer</td>
</tr>
<tr>
<td></td>
<td>• Digital thermometer</td>
</tr>
</tbody>
</table>

Prepare FFPE tissue sections

1. Immediately following dissection, fix tissue in 10% NBF for **16–32 HRS** at **ROOM TEMPERATURE (RT)**. Fixation time will vary depending on tissue type and size.

 CAUTION! Handle biological specimens appropriately.

 IMPORTANT! Fixation for <16 HRS or >32 HRS will impair the performance of the assay.

2. Wash sample with 1X PBS.
3. Dehydrate sample using a standard ethanol series, followed by xylene.
IMPORTANT! Use fresh reagents. Embed samples as quickly as possible to preserve RNA quality.

4. Embed sample in paraffin using standard procedures.

Note: Embedded samples may be stored at room temperature with desiccants. To better preserve RNA quality over a long period (>1 yr), storing at 2–8°C with desiccants is recommended.

5. Trim paraffin blocks, as needed, and cut embedded tissue into 5 ± 1 μm sections using a microtome.

6. Place paraffin ribbon in a 40–45°C water bath, and mount sections on SUPERFROST PLUS SLIDES. Place tissue as shown below for optimal staining:

 ![Diagram of tissue section location]

 IMPORTANT! Do not mount more than one section per slide. Place sections in the center of the slide.

1. Air dry slides **OVERNIGHT** at RT.

OPTIONAL STOPPING POINT (1). You can store sections with desiccants at room temperature. Use sectioned tissue within three months.

Bake slides

1. Bake slides in a dry oven for **1 HR** at 60°C.

OPTIONAL STOPPING POINT (2). Use immediately, or store at RT with desiccants for ≤1 week. Prolonged storage may degrade sample RNA.

Note: If you continue with the procedure, you can prepare materials for the next steps while the slides are baking.

Deparaffinize FFPE sections

Reagents may be prepared ahead of time. Ensure that all containers remain covered.

1. In a fume hood:
 - Fill two Tissue-Tek Clearing Agent dishes with ~200 mL fresh xylene.
 - Fill two Tissue-Tek Staining dishes with ~200 mL fresh 100% ethanol.
2. Place slides in a Tissue-Tek Slide Rack and submerge in the first xylene-containing dish in the fume hood.
3. Incubate the slides in xylene for 5 MIN at RT. Agitate the slides by occasionally lifting the slide rack up and down in the dish.
4. Remove the slide rack from the first xylene-containing dish and immediately place in the second xylene-containing dish in the fume hood.
5. Incubate the slides in xylene for 5 MIN at RT with agitation.
6. Remove the slide rack from the second xylene-containing dish and immediately place in a dish containing 100% ethanol.
7. Incubate the slides in 100% ethanol for 2 MIN at RT with agitation.
8. Remove the slide rack from the first ethanol-containing dish and immediately place in the second ethanol-containing dish.
9. Incubate the slides in 100% ethanol for 2 MIN at RT with agitation.
10. Remove the slides from the rack, and place on absorbent paper with the section face-up. Dry slides in a drying oven for 5 MIN at 60°C (or until completely dry).

Prepare pretreatment materials

1. Turn on the HybEZ Oven, and set the temperature to 40°C.
2. Place a Humidifying Paper in the Humidity Control Tray and wet completely with distilled water.
3. Insert the covered tray into the oven and close the oven door. Warm the tray for 30 MIN at 40°C before use. Keep the tray in the oven when not in use.
4. Prepare 1X Target Retrieval Reagents (e.g. by adding 180 mL distilled water to 20 mL 10X Target Retrieval buffer). Mix well. Target Retrieval buffer must be heated to ≥99°C before use, but not boiled more than ~15 min before use (see below “Perform target retrieval using the steamer”)

Perform target retrieval using the steamer

IMPORTANT! Before you begin, make sure you know the pretreatment conditions specific to your sample type from Appendix C. Tissue Pretreatment Recommendation on page 49.

We highly recommend using a steamer for target retrieval. For target retrieval using a hot plate, see Appendix B. Manual Target Retrieval on page 47.

Note: For each steamer, fill the water to the maximum level before starting and do not refill water during the steaming process. Refilling water during steaming process will drop the temperature and interfere with Target Retrieval.

1. Fill the water reservoir with cold tap water to the MAX fill marking line.

IMPORTANT! Do not overfill.
2. Place two slide holders in the steam bowl. Fill one slide holder with 200 mL of RNAscope 1X Target Retrieval Reagent. Fill the other slide holder with 200 mL of distilled water.
3. Turn on the steamer. Set the heating time to the maximum so the steamer does not shut off during Target Retrieval.
4. Insert a digital thermometer through the holes of the lid and into the container containing RNAscope 1X Target Retrieval Reagent. Allow the temperature to rise to at least 99°C.
5. Add the slides to the container containing distilled water for 10 SEC to acclimate the slides.
6. Remove the slides and move them to the container containing RNAscope 1X Target Retrieval Reagent. Cover the steamer with the lid.
7. Start the timer for 15 MIN for mild and standard conditions and 30 MIN for extended pretreatment. For pretreatment times, consult Appendix C. Tissue Pretreatment Recommendation on page 49.
8. Remove the slides from the steamer and transfer to a separate rinse container with 200 mL of distilled water (RT). Allow the slides to rinse for 15 SEC.
9. Transfer the slides to 100% ethanol for 3 MIN.
10. Dry the slides in a 60°C incubator (or at RT) for 5 MIN.

Create a barrier

1. Use the following template to draw a barrier 2–4 times around each section with the ImmEdge hydrophobic barrier pen.

IMPORTANT! Do not let the barrier touch the tissue section. An ImmEdge hydrophobic barrier pen is highly recommended. Other pens may cause suboptimal results.

Note: We do not recommend drawing a smaller barrier and using less than the recommended volume amounts, even for smaller sections. Larger barriers will result in fewer tests per kit.

2. Let the barrier dry completely ~10 MIN or OVERNIGHT at RT.

Note: If you need to reapply the hydrophobic barrier during the following procedures, dry the appropriate area of the slide with a Kimwipe®. Do not touch the tissue section.
OPTIONAL STOPPING POINT (3). Dry slides overnight at room temperature for use the following
day, or proceed directly to the next section.

Apply RNAscope Protease III

1. Load the dry slides into the ACD EZ-Batch Slide Holder by opening the swing clamp (see
page 52 for detailed instructions).
2. Add ~5 drops of RNAscope Protease III to entirely cover each section.
3. Place the ACD EZ-Batch Slide Holder in the pre-warmed HybEZ Humidity Control Tray.
 Close the lid, seal, and insert the tray back into the oven.
4. Incubate at 40°C for the amount of time specified by the table in Appendix C. Tissue
 Pretreatment Recommendation on page 49.
 Note: If needed, prepare RNAscope Assay materials during this step.
5. Pour at least 200 mL distilled water into the transparent ACD EZ-Batch Wash Tray.
6. Remove the HybEZ Humidity Control Tray from the oven. Remove the slide holder from the
 tray. Place the tray back into the oven.
7. Place the ACDEZ-Batch Slide Holder into the clear plastic wash tray containing water. Make
 sure all the slides are submerged. If needed, carefully add more water. Wash the slides with
 slight agitation.
8. Repeat the wash step with fresh distilled water.

Proceed to the RNAscope Assay

Proceed immediately to Chapter 4. RNAscope HiPlex Assay v2 on page 29.
Fixed-frozen tissue sample preparation and pretreatment

Workflow

<table>
<thead>
<tr>
<th>Step</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare fixed-frozen tissue sections ~1 HR</td>
<td></td>
</tr>
<tr>
<td>Optional Stopping Point (1)</td>
<td></td>
</tr>
<tr>
<td>Prepare pretreatment materials ~30 MIN</td>
<td></td>
</tr>
<tr>
<td>Post-fix and dehydrate the slides ~45 MIN</td>
<td></td>
</tr>
<tr>
<td>Apply RNAscope Target Retrieval Reagents ~5 MIN</td>
<td></td>
</tr>
<tr>
<td>Create a barrier ~10 MIN</td>
<td></td>
</tr>
<tr>
<td>Optional Stopping Point (2)</td>
<td></td>
</tr>
<tr>
<td>Apply RNAscope Protease III ~15–30 MIN</td>
<td></td>
</tr>
<tr>
<td>Proceed IMMEDIATELY to the HiPlex Assay</td>
<td></td>
</tr>
</tbody>
</table>
Materials required

<table>
<thead>
<tr>
<th>Materials provided by Pretreatment Reagents (Cat. No. 322340 and 322000)</th>
<th>Other Materials and Equipment</th>
</tr>
</thead>
</table>
| • RNAscope Protease III
• RNAscope 10X Target Retrieval Reagents | • Scalpel
• Forceps
• Cryo-embedding medium (OCT) or Tissue Freezing Media (TFM)
• Dry ice, liquid nitrogen, or isopentane, or 2-methyl butane
• Cryostat
• Slide boxes
• SuperFrost Plus slides
• Aluminum foil or zip-lock bags
• 1X PBS
• 10% neutral buffered formalin (NBF) or 4% paraformaldehyde (PFA)
• 30% sucrose
• Tissue-Tek Vertical 24 Slide Rack (or similar)
• Tissue-Tek Staining Dishes (or similar)
• ImmEdge™ Hydrophobic Barrier Pen
• HybEZ Humidifying System/ACD EZ-Batch Slide Holder and Tray
• Distilled water
• Paper towel or absorbent paper
• Steamer (Hamilton Beach or Oster)
• Digital thermometer |

Fix samples

1. If needed, perfuse tissue with freshly prepared 4% paraformaldehyde (PFA) in 1X PBS or go directly to Step 2.

Note: We recommend perfusing tissues with 1X PBS followed by freshly prepared 4% paraformaldehyde (PFA) in 1X PBS. For suboptimally prepared samples, you may need to adjust pretreatment conditions.

2. Dissect tissue and fix in freshly prepared 10% NBF or 4% PFA for **24 HRS** at 4°C.

Freeze tissues

1. Immerse the tissue in 10% sucrose in 1X PBS at 4°C until the tissue sinks to the bottom of the container (approximately **18 HRS** for brain tissue).

2. Repeat this step with 20% sucrose in 1X PBS, followed by 30% sucrose in 1X PBS, each time allowing the tissue to sink to the bottom of the container.
3. Freeze the tissue in Optimal Cutting Temperature (OCT) embedding media with dry ice, liquid nitrogen, or 2-methyl butane, and store it in an airtight container at \(-80^\circ\text{C}\).

Prepare sections

1. Before tissue sectioning, equilibrate the tissue blocks at \(-20^\circ\text{C}\) for at least 1 HR in a cryostat.
2. Section the blocks by cutting 7–15 μm thick sections. Mount the sections on SUPERFROST PLUS SLIDES. Place tissue as shown for optimal staining:

 ![Tissue section location](image)

 IMPORTANT! Do not place sections too close to the edges of the slide.

 3. Air dry the slides for 60 –120 MIN at \(-20^\circ\text{C}\).

Dehydrate the tissue

1. Prepare 200mL 50% EtOH, 200 mL 70% EtOH, and 400 mL of 100% EtOH (enough to fill staining dishes).
2. Remove the slides from the 10% NBF or 4% PFA, and immerse them in 50% EtOH for 5 MIN at RT.
3. Remove the slides from 50% EtOH, and immerse them in 70% EtOH for 5 MIN at RT.
4. Remove the slides from 70% EtOH, and immerse them in 100% EtOH for 5 MIN at RT.
5. Repeat step 4 with fresh 100% ethanol.

Dry the slides

1. Remove the slides from 100% EtOH, and let them air dry for 5 MIN at RT.

Prepare pretreatment materials

1. Turn on the HybEZ Ovendr and set temperature to 40°C.
2. Place a Humidifying Paper in the Humidity Control Tray and wet completely with distilled water.
3. Insert covered tray into the oven and close the oven door. Warm the tray for 30 MIN at 40°C before use. Keep the tray in the oven when not in use.
4. Prepare 1X Target Retrieval Reagents (for example, add 180 mL distilled water to 20 mL 10X RNAscope Target Retrieval buffer and mix well).

Note: Target Retrieval buffer must be heated to ≥99°C before use, but do not boil for more than ~15 minutes before use. See the following procedure.

Perform target retrieval using the steamer

We highly recommend using a steamer for target retrieval. For target retrieval using a hot plate, see Appendix B. Manual Target Retrieval on page 47.

Note: For each steamer, fill the water to the maximum level before starting and do not refill water during the steaming process. Refilling water during the steaming process will drop the temperature and interfere with target retrieval.

1. Fill the water reservoir with cold tap water to the MAX fill marking line.

IMPORTANT! Do not overfill.

2. Place two slide holders in the steam bowl. Fill one slide holder with 200 mL of RNAscope 1X Target Retrieval Reagent. Fill the other slide holder with 200 mL of distilled water.
3. Turn on the steamer. Set the heating time to the maximum so steamer does not shut off during Target Retrieval.
4. Insert a digital thermometer through the holes of the lid and into the container containing RNAscope 1X Target Retrieval Reagent. Allow the temperature to rise to at least 99°C.
5. Add the slides to the container containing distilled water for 10 SEC to acclimate the slides.
6. Remove the slides and move them to the container containing RNAscope 1X Target Retrieval Reagent. Cover the steamer with the lid.
7. Start the timer for 5 MIN.
8. Remove the slides from the steamer and immediately transfer to a separate rinse container with 200 mL of distilled water (RT). Allow the slides to rinse for 15 SEC.
9. Transfer the slides to 100% ethanol for 3 MIN.
10. Dry the slides in a 60°C incubator (or at RT) for 5 MIN.
Create a barrier

1. Use the following template to draw a barrier 2–4 times around each section with the ImmEdge hydrophobic barrier pen.

IMPORTANT! Do not let the barrier touch the section. The ImmEdge hydrophobic barrier pen is highly recommended. Other pens may result in suboptimal results.

Note: We do not recommend drawing a smaller barrier and using less than the recommended volume amounts, even for smaller sections. Larger barriers will result in fewer tests per kit.

2. Let the barrier dry completely ~5 MIN.

Note: If you need to reapply the hydrophobic barrier during the following procedures, dry the appropriate area of the slide with a Kimwipe. Do not touch the tissue section.

OPTIONAL STOPPING POINT (2). Dry the slides overnight for use the following day, or proceed directly to the next section.

Apply RNAscope Protease III

Note: The following procedure describes standard pretreatment conditions. You may need to optimize conditions based on tissue type and sample preparation.

1. Load the dry slides into the ACD EZ-Batch Slide Holder by opening the swing clamp (see page 52 for details) then lock slides in place.
2. Place the ACD EZ-Batch Slide Holder in the pre-warmed HybEZ Humidity Control Tray. Close the lid, seal, and insert the tray back into the HybEZ oven.
3. Incubate the samples for 15–30 MIN at 40°C.

Note: If needed, prepare RNAscope Assay materials during this step.

4. Pour at least 200 mL distilled water into the transparent ACD EZ-Batch Wash Tray.
5. Remove the HybEZ Humidity Control Tray from the oven. Remove the slide holder from the tray. Place the tray back into the oven.
6. Place the ACD EZ-Batch Slide Holder into the wash tray containing water. Make sure all the slides are submerged. If needed, carefully add more water. Wash the slides with slight agitation.
7. Repeat the wash step with fresh distilled water.
8. Proceed immediately to Chapter 4. RNAscope HiPlex Assay v2.

IMPORTANT! If over-digestion is observed, first reduce the protease digestion time. Otherwise, use RNAscope Protease Plus instead of RNAscope Protease III.
Fresh-frozen sample preparation and pretreatment

Workflow

<table>
<thead>
<tr>
<th>Prepare fresh-frozen tissue sections</th>
<th>OPTIONAL STOPPING POINT (1, 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix the sections ~60 MIN</td>
<td>Dehydrate the sections ~20 MIN</td>
</tr>
<tr>
<td>OPTIONAL STOPPING POINT (3)</td>
<td>Create a barrier ~10 MIN</td>
</tr>
<tr>
<td>Apply Protease IV ~30 MIN</td>
<td>Proceed IMMEDIATELY to the RNAscope HiPlex Assay v2</td>
</tr>
</tbody>
</table>

Proceed IMMEDIATELY to the RNAscope HiPlex Assay v2
Materials required

<table>
<thead>
<tr>
<th>Materials provided by Pretreatment Reagents (Cat. No. 322380)</th>
<th>Other Materials and Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RNAscope Protease III or IV (depending on sample-specific conditions)</td>
<td>• Scalpel</td>
</tr>
<tr>
<td></td>
<td>• Forceps</td>
</tr>
<tr>
<td></td>
<td>• Cryo-embedding medium (OCT) or Tissue Freezing Media (TFM)</td>
</tr>
<tr>
<td></td>
<td>• Dry ice, liquid nitrogen, or isopentane, or 2-methyl butane</td>
</tr>
<tr>
<td></td>
<td>• Cryostat</td>
</tr>
<tr>
<td></td>
<td>• Slide boxes</td>
</tr>
<tr>
<td></td>
<td>• SuperFrost Plus slides</td>
</tr>
<tr>
<td></td>
<td>• Aluminum foil or zip-lock bags</td>
</tr>
<tr>
<td></td>
<td>• 1X PBS</td>
</tr>
<tr>
<td></td>
<td>• 10% neutral buffered formalin (NBF) or 4% paraformaldehyde (PFA)</td>
</tr>
<tr>
<td></td>
<td>• 100% alcohol (EtOH)</td>
</tr>
<tr>
<td></td>
<td>• Tissue-Tek Vertical 24 Slide Rack (or similar)</td>
</tr>
<tr>
<td></td>
<td>• Tissue-Tek Staining Dishes (or similar)</td>
</tr>
<tr>
<td></td>
<td>• ImmEdge Hydrophobic Barrier Pen</td>
</tr>
<tr>
<td></td>
<td>• HybEZ Humidifying System/ ACD EZ-Batch Slide Holder and Wash Tray</td>
</tr>
<tr>
<td></td>
<td>• Distilled water</td>
</tr>
<tr>
<td></td>
<td>• Paper towel or absorbent paper</td>
</tr>
</tbody>
</table>

Prepare fresh-frozen tissue sections

1. Remove tissue and cut to fit into cryomolds.
2. Freeze the specimen on dry ice or in liquid nitrogen, isopentane, or 2-methyl butane within 5 MIN of tissue harvest.
3. Embed the frozen tissue in cryo-embedding medium (OCT) or Tissue Freezing Medium (TFM):
 a. Add two drops of OCT into a cryomold.
 b. Place the frozen tissue on the OCT in the correct orientation for cutting.
 c. Add more OCT to fill the cryomold. Do not allow any air bubbles to form.
 d. Hold the block with forceps on the surface of the liquid nitrogen or isopentane cooled by dry ice or liquid nitrogen, or place the cryomold on dry ice.
4. Store the frozen block in an air-tight container at –80°C prior to sectioning.

OPTIONAL STOPPING POINT (1). Embedded tissue may be stored for up to three months.

5. Section the block:
 e. Equilibrate block to –20°C in a cryostat ~1 HR.
 f. Cut 10–20 μm thick sections and mount onto SUPERFROST PLUS SLIDES.
g. Dry the sections at **60 –120 MIN** at –20°C to retain tissue adherence.
6. Store the sections in slide boxes wrapped air-tight with aluminum foil or zip-lock bags at –80°C until use.

IMPORTANT! Do not fix the slides prior to this step.

OPTIONAL STOPPING POINT (2). Sections may be stored for up to three months.

Fix the sections

1. Prepare 10% NBF (10% NBF or freshly made 4% PFA in 1X PBS).

IMPORTANT! Use **FRESH** fixatives. Do **NOT** reuse.

2. Remove the slides from –80°C and place in a slide rack or holder.
3. *Immediately* immerse slides in fresh 10% NBF or 4% PFA in 1X PBS fixative. Fix for **60 MIN** at RT.
4. Wash slides with 1X PBS by moving the rack up and down 3–5 times and repeat with fresh 1X PBS.

Note: Do **NOT** use 10% NBF that has been stored for more than six months, exposed to air for more than a week, or used repeatedly. This can result in suboptimal tissue fixation.

Dehydrate the sections

Reagents may be prepared ahead of time. Ensure all containers remain covered.

1. Prepare 200 mL of 50% ethanol, 200 mL of 70% ethanol, and 400 mL of 100% ethanol (enough to fill staining dishes).
2. Place the slides in 50% ethanol for **5 MIN** at RT.
3. Place the slides in 70% ethanol for **5 MIN** at RT.
4. Place the slides in 100% ethanol for **5 MIN** at RT.
5. Repeat step 4 with fresh 100% ethanol.

OPTIONAL STOPPING POINT (2). Slides may be stored in 100% ethanol at –20°C for up to **1 WEEK**. Prolonged storage may degrade sample RNA.

Create a hydrophobic barrier

1. Take the slides out of 100% ethanol and place on absorbent paper with the section face-up. Air dry for **5 MIN** at RT.
2. Use the following template to draw a barrier 2–4 times around each section with the ImmEdge hydrophobic barrier pen.

Note: Refer to **Appendix A. Reagent Volume Guidelines** on page 46 to determine the recommended number of drops needed per slide.

IMPORTANT! Do not let the barrier touch the section. The ImmEdge hydrophobic barrier pen is highly recommended. Other pens may result in suboptimal results.
Note: We do not recommend drawing a smaller barrier and using less than the recommended volume, even for smaller sections. Larger barriers will result in fewer tests per kit.

2. Let the barrier dry completely ~5 MIN.

Note: If you need to reapply the hydrophobic barrier during the following procedures, dry the appropriate area of the slide with a Kimwipe. Do not touch the tissue section.

Prepare the equipment

Place a Humidifying Paper in the Humidity Control Tray and wet completely with distilled water.

Apply Protease IV

1. Load the dried slides into the ACD EZ-Batch Slide Holder (see page 52 for details) and add ~5 drops of Protease IV or enough to entirely cover each section.
2. Incubate for 30 MIN at RT.
3. Remove excess liquid from the slides by decanting and shaking the locked slides in the ACD EZ-Batch Slide Holder. Immediately place the slide holder in the transparent EZ-Batch Wash Tray filled with 1X PBS.
4. Wash slides in 1X PBS with slight agitation and repeat with fresh 1X PBS.
5. Proceed immediately to the next chapter Chapter 4. RNAscope HiPlex Assay v2.

IMPORTANT! Slides should not stay in 1X PBS for longer than 5 MIN.
Chapter 4. RNAscope HiPlex Assay (12-Plex) v2

This procedure flows directly from sample preparation and pretreatment. Refer to Chapter 3. Prepare and Pretreat Samples on page 14 or the appropriate sample preparation and pretreatment user manual or technical note for your specific sample type.

Workflow

<table>
<thead>
<tr>
<th>Prepare the materials ~30 MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run the assay and first round of detection ~4 HRS</td>
</tr>
<tr>
<td>Hybridize probes ~2 HRS</td>
</tr>
<tr>
<td>OPTIONAL STOPPING POINT</td>
</tr>
<tr>
<td>Hybridize RNAscope HiPlex Amp 1 ~30 MIN</td>
</tr>
<tr>
<td>Note: No matter how many probes you are using, you must complete all Amp steps.</td>
</tr>
<tr>
<td>Hybridize RNAscope HiPlex Amp 2 ~30 MIN</td>
</tr>
<tr>
<td>Hybridize RNAscope HiPlex Amp 3 ~30 MIN</td>
</tr>
<tr>
<td>Reduce auto fluorescence using RNAscope HiPlex FFPE Reagent ~30 MIN (Optional)</td>
</tr>
<tr>
<td>Hybridize RNAscope Fluoro T1–T3 v2 ~15 MIN</td>
</tr>
<tr>
<td>Counterstain the slides using RNAscope DAPI ~2 MIN</td>
</tr>
<tr>
<td>Image the samples for Round 1</td>
</tr>
<tr>
<td>Cleave the fluorophores and second round of detection</td>
</tr>
<tr>
<td>Remove the coverslips ~30 MIN</td>
</tr>
</tbody>
</table>
Cleave the fluorophores and wash (1) ~15 MIN

Cleave the fluorophores and wash (2) ~15 MIN

Hybridize RNAscope Fluoro T4–T6 v2 ~15 MIN

Image the samples for Round 2

Cleave the fluorophores and third round of detection

Remove the coverslips ~30 MIN

Cleave the fluorophores and wash (1) ~15 MIN

Cleave the fluorophores and wash (2) ~15 MIN

Hybridize RNAscope Fluoro T7–T9 v2 ~15 MIN

Image the samples for Round 3

Cleave the fluorophores and forth round of detection

Remove the coverslips ~30 MIN

Cleave the fluorophores and wash (1) ~15 MIN

Cleave the fluorophores and wash (2) ~15 MIN

Hybridize RNAscope Fluoro T10–T12 v2 ~15 MIN

Image the samples for Round 4
<table>
<thead>
<tr>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIONAL: Cleave the fluorophores and acquire blank images for use with in silico background subtraction</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Remove the coverslips ~30 MIN</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Cleave the fluorophores and wash (1) ~15 MIN</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Cleave the fluorophores and wash (2) ~15 MIN</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Image the cleaved samples (Round 5)</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Image registration for all four (or four plus blank) rounds of imaging</td>
</tr>
</tbody>
</table>
Materials required for the assay

<table>
<thead>
<tr>
<th>Materials provided by the RNAscope HiPlex Standard Detection Kits</th>
<th>Materials provided by RNAscope HiPlex Cleaving Kit</th>
<th>Materials provided by RNAscope HiPlex Probes</th>
<th>Other materials and equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 50X Wash Buffer</td>
<td>• Cleaving stock solution v2</td>
<td>• 50X RNAscope HiPlex Target Probes</td>
<td>• Prepared sections</td>
</tr>
<tr>
<td>• RNAscope HiPlex Amp 1</td>
<td></td>
<td>• RNAscope HiPlex Probe Diluent</td>
<td>• Distilled water</td>
</tr>
<tr>
<td>• RNAscope HiPlex Amp 2</td>
<td></td>
<td>• RNAscope HiPlex12 Positive Control Probe (RTU)</td>
<td>• 10X PBS</td>
</tr>
<tr>
<td>• RNAscope HiPlex Amp 3</td>
<td></td>
<td>• RNAscope HiPlex12 Negative Control Probe (RTU)</td>
<td>• 20X SSC</td>
</tr>
<tr>
<td>• RNAscope Fluoro T1–T3 v2</td>
<td></td>
<td></td>
<td>• 10% Tween</td>
</tr>
<tr>
<td>• RNAscope Fluoro T4–T6 v2</td>
<td></td>
<td></td>
<td>• Carboy (>3L)</td>
</tr>
<tr>
<td>• RNAscope Fluoro T7–T9 v2</td>
<td></td>
<td></td>
<td>• Tissue-Tek Staining Dish</td>
</tr>
<tr>
<td>• RNAscope Fluoro T10–T12 v2</td>
<td></td>
<td></td>
<td>• HybeEZ Humidifying System/ACD</td>
</tr>
<tr>
<td>• RNAscope FFPE Reagent</td>
<td></td>
<td></td>
<td>EZ-Batch Slide Holder and Tray</td>
</tr>
<tr>
<td>• RNAscope DAPI</td>
<td></td>
<td></td>
<td>• Water bath or incubator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tissue-Tek Vertical 24 Slide Rack</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tubes (various sizes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Paper towel or absorbent paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ProLong Gold Antifade Mountant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cover Glass, 24 mm x 50 mm</td>
</tr>
</tbody>
</table>

Prepare the materials

You may prepare the reagents at the same time you prepare pretreatment reagents. Refer to a sample preparation and pretreatment user guide available at www.acdbio.com/technical-support/user-manuals.

Some of the materials may be prepared in advance and stored at room temperature.

Prepare 1X Wash Buffer

1. Prepare 3 L of 1X Wash Buffer by adding 2.94 L distilled water to 1 bottle of 50X Wash Buffer (60 mL) in a large carboy. Mix well.

 Note: If precipitation occurs in the 50X Wash Buffer, warm it up at 40°C for 10–20 MIN before making the 1X Wash Buffer. 1X Wash Buffer may be prepared ahead of time and stored at room temperature for up to one month.

Prepare 4X SSC

1. To prepare 4X SSC, dilute 20X SSC with distilled water by pipetting one volume of 20X SSC with four volumes of distilled water.
2. Mix thoroughly by inverting the container at least ten times.
Note: Prepare 20X SSC by dissolving 175.3 g of NaCl and 88.2 g of sodium citrate in 800 ml of distilled water and adjusting the pH to 7.0 with a few drops of 1M HCl. Use water to adjust the volume to 1 liter. Sterilize by autoclaving or filtering under vacuum.

Prepare PBST (0.5% Tween)

1. To make 1 liter PBST (0.5% Tween), add 100 mL 10X PBS, 850 mL distilled water, and 50 mL of 10% Tween in a container. Scale up or down as needed.
2. Mix thoroughly by inverting the container at least ten times.

Prepare probes

1. Warm RNAscope HiPlex probe stocks and control probes at 40°C in a water bath or incubator for about 10 MIN.
2. Warm RNAscope HiPlex diluent at 40°C in a water bath or incubator for about 10 MIN.
3. Briefly spin down all 50X probe stocks to collect the liquid at the bottom of the tubes.
4. Mix each unique target probe set by diluting 50X probe stocks with RNAscope HiPlex probe diluent. Dilute probes to 1X by pipetting 1 volume of each stock to 50 volumes of probe diluent.
 - For example, to make 2 mL of solution containing all 12 probes, use 40 μL of each probe stock and add 1520 μL of RNAscope HiPlex Probe Diluent. Mix well.
5. Mix well by vortexing or invert the tube several times.

Note: Do not mix probes of the same tail assignment. The mixed probes can be stored at 2–8°C for up to six months.

Equilibrate reagents

- Place RNAscope HiPlex Amp 1–3 and RNAscope HiPlex Fluoro T1–T4 v2 reagents at RT.
- Ensure that the HybEZ Oven and prepared Humidity Control Tray are at 40°C.

Equilibrate and prepare RNAscope HiPlex FFPE Reagent (optional for fixed-frozen and fresh-frozen samples)

Note: Apply RNAscope HiPlex FFPE Reagent to tissues with high autofluorescence. The reagent can also be used on fixed-frozen and fresh-frozen samples. Apply the RNAscope Hiplex FFPE Reagent before Fluoro Fluoro T1-3 V2, T4-6 v2, T7-9 v2, and/or T10-12 v2.

1. Bring the RNAscope HiPlex FFPE Reagent to RT.
2. Briefly spin down the contents of the FFPE reagent tube to be sure content is at the bottom of the tube before opening the cap.
3. Depending on the size of your hydrophobic barrier, prepare sufficient 2.5%-5% FFPE reagent to cover each section by using a 1:40–1:20 ratio of FFPE reagent to 4X SSC. Mix well.

IMPORTANT! You must use only 4X SSC to dilute the RNAscope HiPlex FFPE Reagent. Due to oxidation, use freshly diluted FFPE reagent to maximize results. During the application of FFPE reagent, the color will turn from light brown to a darker color over time and precipitation could occur. However, the color change and precipitate will not affect the autoflorescence reducing activity.
Run the assay

IMPORTANT! Do NOT let sections dry out between incubation steps. Work quickly and fill barrier with solutions.

IMPORTANT! View the wash step video at www.acdbio.com/technical-support/learn-more before proceeding.

Note: We recommend running control probes on your sample and optimizing the protocol before running any target probes.

Hybridize probe

IMPORTANT! Ensure that the probes are prewarmed to 40°C and cooled to RT prior to use.

1. Remove excess liquid from the slides while keeping the slides locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into HybEZ Humidity Control Tray.
2. Add enough of the appropriate probe to entirely cover each section.

Note: Refer to Appendix A. Reagent Volume Guidelines on page 46 determine the recommended number of drops needed per slide. For example, add 4 drops of the appropriate probe for a 0.75” x 0.75” barrier.

3. Close the tray and insert into the oven for 2 HRS at 40°C.
4. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
5. Remove the HybEZ Humidity Control Tray from the oven. Remove the slide holder from the tray. Place the tray back into the oven.
6. Place the ACD EZ-Batch Slide Holder into the wash tray (see page 52 for details), and wash the slides for 2 MIN at RT.
7. Repeat the wash step with fresh 1X Wash Buffer for 2 MIN at RT.

OPTIONAL STOPPING POINT. You can store the slides in 5X SSC (not provided in the kit) overnight at RT. Before continuing with the assay, wash the slides twice with 1X Wash Buffer for 2 MIN at RT.

Hybridize RNAscope HiPlex Amp 1

1. Remove excess liquid from the slides while keeping the slides locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
2. Add enough RNAscope HiPlex Amp 1 to entirely cover each section.
3. Close the tray and insert into the HybEZ Oven for 30 MIN at 40°C.
4. Remove the HybEZ Humidity Control Tray from the oven. Remove the slide holder from the tray. Place the tray back into the oven.
5. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
6. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for 2 MIN at RT.
7. Repeat the wash step with fresh 1X Wash Buffer for 2 MIN at RT.
Hybridize RNAscope HiPlex Amp 2

1. Remove excess liquid from the slides while keeping the slides locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
2. Add enough RNAscope HiPlex Amp 2 to entirely cover each section.
3. Close the tray and insert into the HybEZ Oven for **30 MIN** at **40°C**.
4. Remove the HybEZ Humidity Control Tray from the oven. Remove the slide holder from the tray. Place the tray back into the oven.
5. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
6. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for **2 MIN** at RT.
7. Repeat the wash step with fresh 1X Wash Buffer for **2 MIN** at RT.

Hybridize RNAscope HiPlex Amp 3

1. Remove excess liquid from the slides while keeping the slides locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
2. Add enough RNAscope HiPlex Amp 3 to entirely cover each section.
3. Close the tray and insert into the HybEZ Oven for **30 MIN** at **40°C**.
4. Remove the HybEZ Humidity Control Tray from the oven. Remove the slide holder from the tray. Place the tray back into the oven or keep it at RT if you are using FFPE Reagent.
5. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
6. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for **2 MIN** at RT.
7. Repeat the wash step with fresh 1X Wash Buffer for **2 MIN** at RT.

Apply RNAscope HiPlex FFPE Reagent to reduce autofluorescence (optional for fresh-frozen and fixed-frozen samples)

Note: FFPE reagent is optional for tissues with low or no autofluorescence. You may skip this procedure and go directly to the RNAscope HiPlex Fluoro T1–T3 v2 hybridization step.

1. Remove excess liquid from the slides while keeping the slides locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
2. Add enough freshly prepared 2.5%–5% FFPE reagent to entirely cover each section.
3. Close the tray and incubate for **30 MIN** at **RT**.
4. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
5. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for **2 MIN** at RT.
6. Repeat the wash step with fresh 1X Wash Buffer for **2 MIN** at RT.

Hybridize RNAscope HiPlex Fluoro T1–T3 v2

1. Remove excess liquid from the slides while keeping the slides locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
2. Add enough RNAscope HiPlex Fluoro T1–T3 to entirely cover each section.
3. Close the tray and insert into the HybEZ Oven for **15 MIN** at **40°C**.
4. Remove the tray from the oven, and remove the slide holder.
5. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-BatchWash Tray.
6. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for 2 MIN at RT.
7. Repeat the wash step with fresh 1X Wash Buffer for 2 MIN at RT.

Counterstain and mount the slides

IMPORTANT! Do this procedure with no more than five slides at a time.

1. Remove excess liquid from the slides, and add ~4 drops of DAPI to each section.
2. Incubate for 30 SEC at RT.
3. Remove DAPI from slides and immediately place 1–2 drops of the ProLong Gold Antifade Mountant onto each section.
4. Carefully place a coverslip over each tissue section. Avoid trapping air bubbles. Store slides in the dark at 2–8°C.

IMPORTANT! Use ProLong Gold Antifade Mountant as the mounting medium to best preserve the RNAscope signals.

IMPORTANT! Store slides in the dark at 2–8°C before and after imaging. To the extent possible, it is ideal to keep slides cool while imaging to slow mountant curing process. As mountant cures, autofluorescence may increase and subsequent removal of coverslips will take longer. Preventing the slides from completely curing can shorten the assay running time and help to preserve tissue morphology throughout different rounds. When possible, imaging slides within 30 MIN of mounting is ideal.

Image the slides for Round 1

1. Image the slides under a fluorescent microscope or fluorescent slide scanner.

Note: To make it easier to locate the same region of interest during the second round of image acquisition, use a microscope with a precise stage recorder. You will need filters for DAPI as well as the AF488, Dylight 550, and Dylight 650 fluorophores.

5. As there will be four rounds of detection and imaging, we recommend including the initials R1 (round 1), R2 (round 2), R3 (round 3), R4 (round 4) and the target names when saving image files. Implementing a naming convention will help you to identify each group of images during the image registration process.

6. Store the slides in the dark at 2–8°C for up to three days or proceed immediately to the fluorophore cleaving step.

Equilibrate reagents

- Place RNAscope HiPlex Fluoro T4–T6 reagent v2 at RT.
- Ensure that the HybEZ Oven is at 40°C.

Cleave the fluorophores

1. To remove the coverslips:
IMPORTANT! Use only 4X SSC buffer. To reduce tissue damage, do not remove the coverslips by force. Soak the slides in 4X SSC until the coverslips can be moved easily. If the slides have been dried completely, you may need to soak the slides in 4X SSC overnight.

- Soak the slides in 4X SSC at RT for at least **30 MIN** or until the coverslips fall off the slides easily.
- Once the coverslips have been removed, briefly wash the slides once in 4X SSC.
- Break open a **FRESH** glass ampoule of provided Cleaving Stock Solution v2.
- Prepare a 10% cleaving solution v2 by diluting with 4X SSC.

IMPORTANT! Due to oxidation, do not use the Cleaving Stock Solution v2 more than once. Use only 4X SSC to make 10% cleaving solution v2.

5. Load the slides in the ACD EZ-Batch Slide Holder.
6. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
7. Apply enough freshly prepared 10% cleaving solution v2 to entirely cover each section.
8. Close the tray and incubate for **15 MIN** at RT.
9. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
10. Remove the slide holder from the tray.
11. Place the slide holder into the wash tray and wash the slides for **2 MIN** at RT.
12. Repeat the wash step one more time with fresh PBST (0.5% Tween) for **2 MIN** at RT.

IMPORTANT! Use only PBST (0.5% Tween) for this step.

13. Repeat a second cleaving reaction starting with the following step.
14. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
15. Apply enough 10% cleaving solution v2 to entirely cover each section.
16. Close the tray and incubate for **15 MIN** at RT.
17. Remove the slide holder from the tray, and place the tray into the HybEZ Oven to warm for the next step.
18. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
19. Place the slide holder into the wash tray and wash the slides for **2 MIN** at RT.
20. Repeat the wash step one more time with fresh PBST (0.5% Tween) for **2 MIN** at RT.

Hybridize RNAscope HiPlex Fluoro T4–T6 v2

Note: If necessary, reapplication of diluted RNAscope HiPlex FFPE Reagent to tissues with high autofluorescence is recommended for improvement in signal to noise ratio. See the procedure on page 35.

1. The ACD EZ-Batch Slide Holder should be warm to begin this step.
2. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
3. Add enough RNAscope HiPlex Fluoro T4–T6 v2 to entirely cover each section.
4. Close the tray and insert into the HybEZ Oven for **15 MIN** at 40°C.
5. Remove the tray from the oven, and remove the slide holder from the tray.
6. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
7. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for **2 MIN** at RT.
8. Repeat the wash step with fresh 1X Wash Buffer for **2 MIN** at RT.

Mount the slides

IMPORTANT! Do this procedure with no more than five slides at a time.

1. Remove access liquid from the slides, and *immediately* place 1–2 drops of the ProLong Gold Antifade Mountant onto each section.
2. Carefully place a coverslip over each tissue section. Avoid trapping air bubbles. Store the slides in the dark at **2–8°C**.

Mount the slides

Image the slides for Round 2

1. Image the slides under a fluorescent microscope or fluorescent slide scanner.

Note: To make it easier to locate the same region of interest during each round of image acquisition, use a microscope with a precise stage recorder. You will need filters for DAPI, as well as the AF488, Dylight 550, and Dylight 650 fluorophores.

IMPORTANT! Round 1 and Round 2 images require at least 70% overlap to be successfully registered using RNAscope HiPlex Image Registration Software v2.0. Image registration uses nuclear staining, most commonly DAPI staining, as a reference. Adjust the exposure times to make sure that the nuclear signal matches between Round 1 and Round 2 imaging.

7. As there will be four rounds of detection and imaging, we recommend including the initials R1 (round 1), R2 (round 2), R3 (round 3), R4 (round 4) and the target names when saving image files. Implementing a naming convention will help you identify each group of images during the image registration process.
8. Store the slides in the dark at **2–8°C** for up to three days or proceed immediately to fluorophore cleaving.

Equilibrate reagents

- Place RNAscope HiPlex Fluoro T7–T9 reagent v2 at RT.
- Ensure that the HybEZ Oven is at **40°C**.

Cleave the fluorophores

1. To remove the coverslips:

IMPORTANT! Use only 4X SSC buffer. To reduce tissue damage, do not remove the coverslips by force. Soak the slides in 4X SSC until the coverslips can be moved easily. If the slides have been dried completely, you may need to soak the slides in 4X SSC overnight.
a. Soak the slides in 4X SSC at RT for at least 30 MIN or until the coverslips fall off the slides easily.
 b. Gently remove each coverslip.
2. Once the coverslips have been removed, briefly wash the decoverslipped slides once in 4X SSC.
4. Prepare a 10% cleaving solution v2 by diluting with 4X SSC.

IMPORTANT! Due to oxidation, do not use the Cleaving Stock Solution v2 more than once. Use only 4X SSC to make 10% cleaving solution v2.

5. Load the slides in the ACD EZ-Batch Slide Holder.
6. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
7. Apply enough freshly prepared 10% cleaving solution v2 to entirely cover each section.
8. Close the tray and incubate for 15 MIN at RT.
9. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
10. Remove the slide holder from the tray.
11. Place the slide holder into the wash tray, and wash the slides for 2 MIN at RT.
12. Repeat the wash step one more time with fresh PBST (0.5% Tween) for 2 MIN at RT.

IMPORTANT! Use only PBST (0.5% Tween) for this step.

13. Repeat a second cleaving reaction starting with Step 14.
14. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
15. Apply enough 10% cleaving solution v2 to entirely cover each section.
16. Close the tray and incubate for 15 MIN at RT.
17. Remove the slide holder from the tray, and place the tray into the HybEZ Oven to warm for the next step.
18. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
19. Place the slide holder into the wash tray and wash the slides for 2 MIN at RT.
20. Repeat the wash step one more time with fresh PBST (0.5% Tween) for 2 MIN at RT.

Hybridize RNAscope HiPlex Fluoro T7–T9 v2

Note: If necessary, reapplication of diluted RNAscope HiPlex FFPE Reagent to tissues with high autofluorescence is recommend for improvement in signal to noise ratio. See the procedure on page

Error! Bookmark not defined..

1. The ACD EZ-Batch Slide Holder should be warm to begin this step.
2. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
3. Add ~4 drops of RNAscope HiPlex Fluoro T7–T9 v2 to entirely cover each section.
4. Close the tray and insert into the HybEZ Oven for 15 MIN at 40°C.
5. Remove the tray from the oven, and remove the slide holder from the tray.
6. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
7. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for 2 MIN at RT.
8. Repeat the wash step with fresh 1X Wash Buffer for 2 MIN at RT.

Counterstain and mount the slides

IMPORTANT! Do this procedure with no more than five slides at a time.

1. Remove access liquid from the slides, and immediately place 1–2 drops of the ProLong Gold Antifade Mountant onto each section.
2. Carefully place a coverslip over each tissue section. Avoid trapping air bubbles. Store the slides in the dark at 2–8°C.

Image the slides for Round 3

1. Image the slides under a fluorescent microscope or fluorescent slide scanner.

Note: To make it easier to locate the same region of interest during each round of image acquisition, use a microscope with a precise stage recorder. You will need filters for DAPI, as well as the AF488, Dylight 550 and Dylight 650 fluorophores.

IMPORTANT! Round 1, Round 2, Round 3 and Round 4 images require at least 70% overlap to be successfully registered using RNAscope HiPlex Image Registration Software v2.0. Image registration uses nuclear staining, most commonly DAPI staining, as a reference. Adjust the exposure times to make sure that the nuclear signal matches between Round 1 and Round 2 imaging.

2. As there will be four rounds of detection and imaging, we recommend including the initials R1 (round 1), R2 (round 2), R3 (round 3), R4 (round 4) and the target names when saving image files. Implementing a naming convention will help you identify each group of images during the image registration process.
3. Store the slides in the dark at 2–8°C.

Equilibrate reagents

- Place RNAscope HiPlex Fluoro T10–T12 reagent v2 at RT.
- Ensure that the HybEZ Oven is at 40°C.

Cleave the fluorophores

1. To remove the coverslips:

IMPORTANT! Use only 4X SSC buffer. To reduce tissue damage, do not remove the coverslips by force. Soak the slides in 4X SSC until the coverslips can be moved easily. If the slides have been dried completely, you may need to soak the slides in 4X SSC overnight.

a. Soak the slides in 4X SSC at RT for at least 30 MIN or until the coverslips fall off the slides easily.

b. Gently remove each coverslip.

2. Once the coverslips have been removed, briefly wash the slides once in 4X SSC.
4. Prepare a 10% cleaving solution v2 by diluting with 4X SSC.

IMPORTANT! Due to oxidation, do not use the Cleaving Stock Solution v2 more than once. Use only 4X SSC to make 10% cleaving solution v2.

5. Load the slides in the ACD EZ-Batch Slide Holder.
6. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
7. Apply enough freshly prepared 10% cleaving solution v2 to entirely cover each section.
8. Close the tray and incubate for 15 MIN at RT.
9. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
10. Remove the slide holder from the tray.
11. Place the slide holder into the wash tray and wash the slides for 2 MIN at RT.
12. Repeat the wash step one more time with fresh PBST (0.5% Tween) for 2 MIN at RT.

IMPORTANT! Use only PBST (0.5% Tween) for this step.

13. Repeat a third cleaving reaction starting with Step 14.
14. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
15. Apply enough 10% cleaving solution v2 to entirely cover each section.
16. Close the tray and incubate for 15 MIN at RT.
17. Remove the slide holder from the tray, and place the tray into the HybEZ Oven to warm for the next step.
18. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
19. Place the slide holder into the wash tray and wash the slides for 2 MIN at RT.
20. Repeat the wash step one more time with fresh PBST (0.5% Tween) for 2 MIN at RT.

Hybridize RNAscope HiPlex Fluoro T10–T12 v2

Note: If necessary, reapplication of diluted RNAscope HiPlex FFPE Reagent to tissues with high autofluorescence is recommend for improvement in signal to noise ratio. See the procedure on page 35.

1. The ACD EZ-Batch Slide Holder should be warm to begin this step.
2. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
3. Add enough RNAscope HiPlex Fluoro T10–T12 v2 to entirely cover each section.
4. Close the tray and insert into the HybEZ Oven for 15 MIN at 40°C.
5. Remove the tray from the oven, and remove the slide holder from the tray.
6. Pour at least 200 mL 1X Wash Buffer into the transparent ACD EZ-Batch Wash Tray.
7. Place the ACD EZ-Batch Slide Holder into the wash tray, and wash the slides for 2 MIN at RT.
8. Repeat the wash step with fresh 1X Wash Buffer for 2 MIN at RT.

Mount the slides

IMPORTANT! Do this procedure with no more than five slides at a time.
1. Remove access liquid from the slides, and immediately place 1–2 drops of the ProLong Gold Antifade Mountant onto each section.
2. Carefully place a coverslip over each tissue section. Avoid trapping air bubbles. Store the slides in the dark at 2–8°C.

Image the slides for Round 4

1. Image the slides under a fluorescent microscope or fluorescent slide scanner.

 NOTE: To make it easier to locate the same region of interest during each round of image acquisition, use a microscope with a precise stage recorder. You will need filters for DAPI, as well as the AF488, Dylight 550 and Dylight 650 fluorophores.

 IMPORTANT! Round 1, Round 2, Round 3 and Round 4 images require at least 70% overlap to be successfully registered using RNAscope HiPlex Image Registration Software v2.0. Image registration uses nuclear staining, most commonly DAPI staining, as a reference. Adjust the exposure times to make sure that the nuclear signal matches between Round 1 and Round 2 imaging.

2. As there will be four rounds of detection and imaging, we recommend including the initials R1 (round 1), R2 (round 2), R3 (round 3), R4 (round 4) and the target names when saving image files. Implementing a naming convention will help you identify each group of images during the image registration process.
3. Store the slides in the dark at 2–8°C for up to three days or proceed immediately to fluorophore cleaving.

Image the slides for Blank Image Reference – OPTIONAL

 IMPORTANT! This round of blank slide imaging is recommended if the tissue specimen exhibited high autofluorescence background that interfered with the detection of positive fluorescent signals.

1. After round-4 imaging, remove the coverslips:

 IMPORTANT! Use only 4X SSC buffer. To reduce tissue damage, do not remove the coverslips by force. Soak the slides in 4X SSC until the coverslips can be moved easily. If the slides have been dried completely, you may need to soak the slides in 4X SSC overnight.

2. Soak the slides in 4X SSC at RT for at least 30 MIN or until the coverslips fall off the slides easily.
3. Gently remove each coverslip.
4. Once the coverslips have been removed, briefly wash the decoverslipped slides once in 4X SSC.
5. Break open a FRESH glass ampoule of provided Cleaving Stock Solution v2.
6. Prepare a 10% cleaving solution v2 by diluting with 4X SSC.

 IMPORTANT! Due to oxidation, do not use the Cleaving Stock Solution v2 more than once. Use only 4X SSC to make 10% cleaving solution v2.

7. Load the slides in the ACD EZ-Batch Slide Holder.
8. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
9. Apply enough freshly prepared 10% cleaving solution v2 to entirely cover each section.
10. Close the tray and incubate for 15 MIN at RT.
11. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
12. Remove the slide holder from the tray.
13. Place the slide holder into the wash tray, and wash the slides for 2 MIN at RT.
14. Repeat the wash step one more time with fresh PBST (0.5% Tween) for 2 MIN at RT.

IMPORTANT! Use only PBST (0.5% Tween) for this step.

15. Repeat Steps 6–12 but warm the HybEZ Humidity Control Tray back up to 40°C:
16. Remove excess liquid from the slides while keeping them locked in the ACD EZ-Batch Slide Holder. Insert the slide holder into the HybEZ Humidity Control Tray.
17. Apply enough 10% cleaving solution v2 to entirely cover each section.
18. Close the tray and incubate for 15 MIN at RT.
19. Remove the slide holder from the tray, and place the tray into the HybEZ Oven.
20. Pour at least 200 mL PBST (0.5% Tween) into the transparent ACD EZ-Batch Wash Tray.
21. Place the slide holder into the wash tray and wash the slides for 2 MIN at RT.
22. Repeat the wash step one more time with fresh PBST (0.5% Tween) for 2 MIN at RT.

Counterstain and mount the slides

IMPORTANT! Do this procedure with no more than five slides at a time.

1. Remove access liquid from the slides, and immediately place 1–2 drops of the ProLong Gold Antifade Mountant onto each section.
2. Carefully place a coverslip over each tissue section. Avoid trapping air bubbles. Store the slides in the dark at 2–8°C.

Image the slides to use with background subtraction function in HiPlex Registration Software v2.0

1. Image the slides under a fluorescent microscope or fluorescent slide scanner in all fluorescent channels employed in previous imaging rounds.

To make it easier to locate the same region of interest during each round of image acquisition, use a microscope with a precise stage recorder. You will need filters for DAPI, as well as the AF488, Dylight550, and Dylight650 fluorophores.

IMPORTANT! Round 1, Round 2, Round 3, Round 4 and Round 5 images require at least 70% overlap to be successfully registered using RNAscope HiPlex Image Registration Software v2.0. Image registration uses nuclear staining, most commonly DAPI staining, as a reference. Adjust the exposure times to make sure that the nuclear signal matches between Round 1, Round 2, Round 3, Round 4, and Round 5 imaging. For HiPlex v2 assay with more than 12 gene targets, blanking imaging may be performed after the completion of all target gene rounds.
2. Store the slides in the dark at 2–8°C.

Image registration using RNAscope HiPlex Registration Software v2.0

- Register the DAPI, AF488, Dylight550 fluorescent images generated from all rounds.
- To ensure accuracy, make sure that the DAPI channel images are similarly exposed.
- Refer to the RNAscope HiPlex Registration Software User Manual (Doc. No. 300065-USM). A step by step guide for how to use the software is also available in the installer package of the software. If you have any questions, contact ACD technical support at support.acd@biotechne.com.

Evaluate the samples

For an example of successful staining, see Figure 2 on page 44. Examine tissue sections under a standard fluorescent microscope at 20–40X magnification. You can also use a confocal microscope.

- Assess tissue and cell morphology.
- Assess the positive control signal strength. Positive control signal should be visible as punctuate dots within a cell at 20X magnification.
- Assess the negative control background. Five dots in every 10 cells displaying background staining per microscope field is acceptable at 20X magnification.

Fluorescent Imaging Recommendations

Here are a few fluorescent imaging recommendations:

<table>
<thead>
<tr>
<th>Viewing</th>
<th>Detection</th>
<th>Microscope</th>
<th>Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Image capture is the recommended digital capturing option</td>
<td>• Microscope with camera and fluorescence options. Multispectrum microscope/camera system recommended (eg. Nuance FX)</td>
<td>• Leica DM series or equivalent</td>
<td>• 20X (N.A 0.75) air, 40X (N.A. 0.8) air, 40X (N.A. 1.3) oil, 63X (N.A. 1.3) oil, and 100X (N.A. 1.4) oil</td>
</tr>
<tr>
<td>• Fluorescence viewing is the recommended viewing option</td>
<td>• Fluorescence detection requires a high resolution and high sensitivity cooled CCD camera that is 64 μm pixel size or smaller with > 65% peak quantum efficiency</td>
<td>• Zeiss Axio Imager or equivalent</td>
<td>• 20X and 40X objective can be used for visualization of high expression genes and low expression genes, respectively</td>
</tr>
<tr>
<td></td>
<td>• Common models include: Orca-Flash 4.0 (Hamamatsu), and Nuance FX (Nuance)</td>
<td>• Inverted microscope is okay if optics and condenser meet requirements</td>
<td></td>
</tr>
</tbody>
</table>

Example image

Figure 2 is an example of RNA expression in the striatum region of a normal mouse brain.
Figure 2. Visualizing striatal Drd1a and Drd2 Medium Spiny Neurons (MSNs) using the RNAscope HiPlex Assay v2 for 12 targets in fresh-frozen mouse brain sections. Targets are Drd1a, Drd2, Foxp1, Pcdh8, Synpr (in white), Htr7, Meis2, Calb1, Crym, Cnr1, Wfs1, Th (in yellow).

Troubleshooting

For troubleshooting information, please contact technical support at support.acd@bio-techne.com.
Appendix A. Reagent Volume Guidelines

Determine reagent volume

Before starting your experiment, measure the inner edge of the hydrophobic barrier to determine the recommended number of drops needed per slide (see table below).

<table>
<thead>
<tr>
<th>Size of hydrophobic barrier* (in)</th>
<th>Recommended number of drops per slide</th>
<th>Recommended volume per slide (µL)</th>
<th>Relative template size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75” x 0.75” †</td>
<td>4</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>0.75” x 1.0”</td>
<td>5</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>0.75” x 1.25”</td>
<td>6</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

* Hydrophobic barrier measured at inner edge. References in this user manual are for the 0.75” x 0.75” hydrophobic barrier size.

† Recommended hydrophobic barrier size is 0.75” x 0.75”. With this barrier size, each probe is sufficient for staining ~10 sections. Larger tissue sections will result in fewer tests.
Appendix B. Manual
Target Retrieval

Materials required

<table>
<thead>
<tr>
<th>Materials provided by the Universal Pretreatment Kit</th>
<th>Other Materials and Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RNAscope 10X Target Retrieval Reagents</td>
<td>• Prepared slides</td>
</tr>
<tr>
<td></td>
<td>• Distilled water</td>
</tr>
<tr>
<td></td>
<td>• Glass beaker (1 or 2 L)</td>
</tr>
<tr>
<td></td>
<td>• Paper towel or absorbent paper</td>
</tr>
<tr>
<td></td>
<td>• Hot plate, isotemp brand</td>
</tr>
<tr>
<td></td>
<td>• Aluminum foil</td>
</tr>
<tr>
<td></td>
<td>• Thermometer</td>
</tr>
<tr>
<td></td>
<td>• Forceps, large</td>
</tr>
<tr>
<td></td>
<td>• Tissue Tek Slide Rack</td>
</tr>
<tr>
<td></td>
<td>• Tissue Tek Staining Dish</td>
</tr>
<tr>
<td></td>
<td>• ImmEdge Hydrophobic Barrier Pen</td>
</tr>
</tbody>
</table>

Prepare 1X RNAscope Target Retrieval Reagents

IMPORTANT! Do NOT boil the 1X RNAscope Target Retrieval Reagents more than 15 MIN before use.

1. Prepare 700 mL of fresh RNAscope 1X Target Retrieval Reagents by adding 630 mL distilled water to 1 bottle (70 mL) 10X Target Retrieval Reagents in the beaker. Mix well.
2. Place the beaker containing RNAscope 1X Target Retrieval Reagents on the hot plate. Cover the beaker with foil, and turn the hot plate on high for 10–15 MIN.
3. Once the 1X RNAscope Target Retrieval Reagents reach a mild boil (98–102°C), turn the hot plate to a lower setting to maintain the correct temperature. Check the temperature with a thermometer.

Apply RNAscope Target Retrieval Reagents

1. With a pair of forceps very slowly submerge the slide rack containing the slides into the mildly boiling RNAscope 1X Target Retrieval Reagents solution. Cover the beaker with foil, and boil the slides for the amount of time specified by the table in Appendix C. Tissue Pretreatment Recommendation.
2. Use the forceps to immediately transfer the hot slide rack from the RNAscope 1X Target Retrieval Reagents to the staining dish containing distilled water. Do not let the slides cool in the Target Retrieval Reagents solution.
3. Wash slides 3–5 times by moving the Tissue-Tek Slide Rack up and down in the distilled water.
4. Wash slides in fresh 100% alcohol, and allow the slides to dry completely at 60°C for 5 MIN.
5. Draw the hydrophobic barrier, and continue with RNAscope HiPlex Assay v2.
Appendix C. Tissue Pretreatment Recommendation

Follow the recommended pretreatment conditions based on your tissue type for:

- Any new or previously untested FFPE tissue types.
- Samples prepared differently than the sample preparation protocol found in this user manual.

Tissue pretreatment recommendation

1. Stain representative samples using the positive and negative control probes.
2. Fix sample in fresh 10% NBF for 16–32 HRS at RT.

 Note: Perform tissue fixation step using the recommended amount of time. Over or under-fixation will result in significant signal loss when performing the RNAscope Assay.

3. Depending on your tissue type, vary the amount of time for the Target Retrieval Reagents and/or Protease III. Refer to the following section.

Some sample types, such as certain xenografts and cell pellets, could require less time. For these tissue types, vary the RNAscope Target Retrieval Reagents time to 8 MIN and RNAscope Protease III time to 15 MIN. For the ACD Cell Pellet sample, we recommend a 10 MIN treatment with Target Retrieval Reagents, and a 30 MIN treatment with RNAscope Protease III. If you have a tissue type not listed, contact support at support@acdbio.com.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Mild</th>
<th>Standard</th>
<th>Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAscope Target Retrieval Reagents</td>
<td>15 MIN</td>
<td>15 MIN</td>
<td>30 MIN</td>
</tr>
<tr>
<td>RNAscope Protease III</td>
<td>15 MIN</td>
<td>30 MIN</td>
<td>30 MIN</td>
</tr>
</tbody>
</table>

Tissue-specific pretreatment conditions

For suboptimally treated samples, you may need to optimize pretreatment conditions. Refer this document and information provided at http://acdbio.com/technical-support/solutions. If your sample fixation is successful in fresh 10% NBF (see Step 2 from the preceding protocol), then refer to the following table for tissue-specific pretreatment conditions. For information about species or tissue type not listed here, contact support at support@acdbio.com.

<table>
<thead>
<tr>
<th>Species</th>
<th>Tissue Type</th>
<th>Pathology</th>
<th>Pretreatment Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse/Rat</td>
<td>Intestine</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Intestine</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Embryo</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Brain</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Spleen</td>
<td>Normal</td>
<td>Mild</td>
</tr>
<tr>
<td>Species</td>
<td>Tissue Type</td>
<td>Pathology</td>
<td>Pretreatment Condition</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Mouse/Rat</td>
<td>Eye/Retina</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>Normal</td>
<td>Extended</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td>Human</td>
<td>Breast</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Colon</td>
<td>Tumor/Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Prostate</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Prostate</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Lymph node</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Lymph node</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Tonsil</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Cervical</td>
<td>Cancer</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Cervical</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Cervical dysplasia</td>
<td>Abnormal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Brain</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Brain</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Head</td>
<td>Cancer</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Neck</td>
<td>Cancer</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>Cancer</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Nevus</td>
<td>Benign</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Placenta</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Skin (TMA*)</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Breast (TMA)</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Melanoma (TMA)</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Nevus (TMA)</td>
<td>Benign</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Stomach (TMA)</td>
<td>Normal</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Stomach (TMA)</td>
<td>Tumor</td>
<td>Standard</td>
</tr>
<tr>
<td>Species</td>
<td>Tissue Type</td>
<td>Pathology</td>
<td>Pretreatment Condition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Human</td>
<td>Cell pellets, fixed with 10% NBF</td>
<td>—</td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>HeLa cells, fixed with 10% Formaldehyde/PBS/ACD Control</td>
<td>—</td>
<td>10 MIN Target Retrieval; 30 MIN Protease III</td>
</tr>
</tbody>
</table>

* Tissue Microarray
Appendix D. Using the EZ-Batch Slide Holder and Wash Tray

Load the slides in the ACD EZ-Batch Slide Holder

The ACD EZ-Batch Slide Holder can hold up to 20 standard glass slides in secure, lock-down positions arranged in two parallel columns. Lock-down is achieved by two lockable swing clamps, one per column, along both sides of the slide holder. Clamp locking mechanisms are located at the slots found at one end of each clamp.

1. Open the swing clamps one at a time by simultaneously squeezing (pressing and holding) the slotted portion of each clamp and rotating it up then outwards, as shown.

2. Insert the slides one at a time into the holder (up to 10 slides per column). The non-label end of each slide should be aligned toward the center of the holder and inserted under the fixed clamp, as shown. Place the rest of the slide down into the holder.
3. Close and lock the swing clamp of the column by simultaneously squeezing the slotted portion of each clamp and rotating it in then downwards in the direction opposite to the direction used to open the clamp, as shown.

![Diagram of clamp](image1)

Wash slides in the Wash Tray

1. Place the ACD EZ-Batch Slide Holder into the clear plastic wash tray containing water. Make sure all the slides are submerged. If needed, carefully add more water. Wash the slides with slight agitation.

![Diagram of wash tray](image2)
Appendix E. Safety

Chemical safety

WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below, and consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, visit http://www.acdbio.com/technical-support/user-manuals.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood).
- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.

IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

Biological hazard safety

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective equipment, which includes but is not limited to: protective eyewear, face shield, clothing/lab coat, and gloves. All work should be conducted in properly equipped facilities using the appropriate safety equipment (for example, physical containment devices). Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially infectious materials. Read and follow the applicable guidelines and/or regulatory requirements in the following:

In the U.S.:

U.S. Department of Health and Human Services guidelines published in Biosafety in Microbiological and Biomedical Laboratories found at www.cdc.gov/biosafety
• Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030)
• Your company’s/institution’s Biosafety Program protocols for working with/handling potentially infectious materials
• Additional information about biohazard guidelines is available at www.cdc.gov/

In the EU:
Check local guidelines and legislation on biohazard and biosafety precaution and refer to the best practices published in the World Health Organization (WHO) Laboratory Biosafety Manual, third edition
Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
Documentation and support

Obtaining SDSs

Safety Data Sheets (SDSs) are available at: www.acdbio.com/technical-support/user-manuals. For the SDSs of chemicals not distributed by Advanced Cell Diagnostics, contact the chemical manufacturer.

Obtaining support

For the latest services and support information, go to: www.acdbio.com/technical-support/support-overview.

At the website, you can:

- Access telephone and fax numbers to contact Technical Support and Sales facilities.
- Search through frequently asked questions (FAQs).
- Submit a question directly to Technical Support.
- Search for user documents, SDSs, application notes, citations, training videos, and other product support documents.
- Find out information about customer training events.

Contact information

Advanced Cell Diagnostics, Inc.
7707 Gateway Boulevard
Newark, CA 94560
Toll Free: 1-877-576-3636
Direct: 1-510-576-8800
Fax: 1-510-576-8801
Information: info.acd@bio-techne.com
Support Email: support.acd@bio-techne.com

Limited product warranty

Advanced Cell Diagnostics, Inc. and/or its affiliate(s) warrant their products as set forth in the ACD General Terms and Conditions of Sale found on the ADC website at www.acdbio.com/store/terms. If you have any questions, please contact Advanced Cell Diagnostics at www.acdbio.com/about/contact.