Feigin, CY;Moreno, JA;Ramos, R;Mereby, SA;Alivisatos, A;Wang, W;van Amerongen, R;Camacho, J;Rasweiler, JJ;Behringer, RR;Ostrow, B;Plikus, MV;Mallarino, R;
PMID: 36961889 | DOI: 10.1126/sciadv.ade7511
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Zhang, CH;Gao, Y;Hung, HH;Zhuo, Z;Grodzinsky, AJ;Lassar, AB;
PMID: 36435829 | DOI: 10.1038/s41467-022-35010-0
While prior work has established that articular cartilage arises from Prg4-expressing perichondrial cells, it is not clear how this process is specifically restricted to the perichondrium of synovial joints. We document that the transcription factor Creb5 is necessary to initiate the expression of signaling molecules that both direct the formation of synovial joints and guide perichondrial tissue to form articular cartilage instead of bone. Creb5 promotes the generation of articular chondrocytes from perichondrial precursors in part by inducing expression of signaling molecules that block a Wnt5a autoregulatory loop in the perichondrium. Postnatal deletion of Creb5 in the articular cartilage leads to loss of both flat superficial zone articular chondrocytes coupled with a loss of both Prg4 and Wif1 expression in the articular cartilage; and a non-cell autonomous up-regulation of Ctgf. Our findings indicate that Creb5 promotes joint formation and the subsequent development of articular chondrocytes by driving the expression of signaling molecules that both specify the joint interzone and simultaneously inhibit a Wnt5a positive-feedback loop in the perichondrium.
Guerrero-Juarez, CF;Lee, GH;Liu, Y;Wang, S;Karikomi, M;Sha, Y;Chow, RY;Nguyen, TTL;Iglesias, VS;Aasi, S;Drummond, ML;Nie, Q;Sarin, K;Atwood, SX;
PMID: 35687691 | DOI: 10.1126/sciadv.abm7981
How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
Dada, LA;Welch, LC;Magnani, ND;Ren, Z;Han, H;Brazee, PL;Celli, D;Flozak, AS;Weng, A;Herrerias, MM;Kryvenko, V;Vadász, I;Runyan, CE;Abdala-Valencia, H;Shigemura, M;Casalino-Matsuda, SM;Misharin, AV;Budinger, GRS;Gottardi, CJ;Sznajder, JI;
PMID: 36626234 | DOI: 10.1172/jci.insight.159331
Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, using a mouse model of hypercapnia exposure, cell lineage-tracing, spatial transcriptomics and 3D-cultures, we show that hypercapnia limits β-catenin signaling in AT2 cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+-fibroblasts from those maintaining AT2 progenitor activity towards those that antagonize β-catenin signaling thereby limiting progenitor function. Constitutive activation of β-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality. .
Liu, Y;Guerrero-Juarez, C;Xiao, F;Shettigar, N;Ramos, R;Kuan, C;Lin, Y;de Jesus Martinez Lomeli, L;Park, J;Oh, J;Liu, R;Lin, S;Tartaglia, M;Yang, R;Yu, Z;Nie, Q;Li, J;Plikus, M;
| DOI: 10.1016/j.devcel.2022.06.005
Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua
Cheung, VC;Peng, CY;Marinić, M;Sakabe, NJ;Aneas, I;Lynch, VJ;Ober, C;Nobrega, MA;Kessler, JA;
PMID: 34010658 | DOI: 10.1016/j.celrep.2021.109138
Various human diseases and pregnancy-related disorders reflect endometrial dysfunction. However, rodent models do not share fundamental biological processes with the human endometrium, such as spontaneous decidualization, and no existing human cell cultures recapitulate the cyclic interactions between endometrial stromal and epithelial compartments necessary for decidualization and implantation. Here we report a protocol differentiating human pluripotent stem cells into endometrial stromal fibroblasts (PSC-ESFs) that are highly pure and able to decidualize. Coculture of PSC-ESFs with placenta-derived endometrial epithelial cells generated organoids used to examine stromal-epithelial interactions. Cocultures exhibited specific endometrial markers in the appropriate compartments, organization with cell polarity, and hormone responsiveness of both cell types. Furthermore, cocultures recapitulate a central feature of the human decidua by cyclically responding to hormone withdrawal followed by hormone retreatment. This advance enables mechanistic studies of the cyclic responses that characterize the human endometrium.
A cellular and spatial map of the choroid plexus across brain ventricles and ages
Dani, N;Herbst, RH;McCabe, C;Green, GS;Kaiser, K;Head, JP;Cui, J;Shipley, FB;Jang, A;Dionne, D;Nguyen, L;Rodman, C;Riesenfeld, SJ;Prochazka, J;Prochazkova, M;Sedlacek, R;Zhang, F;Bryja, V;Rozenblatt-Rosen, O;Habib, N;Regev, A;Lehtinen, MK;
PMID: 33932339 | DOI: 10.1016/j.cell.2021.04.003
The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1β (IL-1β) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.